

Computer Graphics

Sipos Ágoston

siposagoston@inf.elte.hu

Eötvös Loránd University
Faculty of Informatics

2025-2026. Fall semester

Table of contents

Parametric surfaces

Bilinear surfaces

Polynomial tensor product surfaces

Bézier surfaces

Spline surfaces

Operations with surfaces

Subdivision surfaces

Motivation

Doo-Sabin

Catmull-Clark

Representing surfaces

- ▶ Explicit: $z = f(x, y) \rightarrow \{(x, f(x)) \mid x \in \mathcal{D}_f \subset \mathbb{R}\}$
- ▶ Implicit: $f(x, y, z) = 0 \rightarrow \{\mathbf{x} \in \mathcal{D}_f \subset \mathbb{R}^2 \mid f(\mathbf{x}) = 0\}$
- ▶ Parametric: $\mathbf{p}(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix} \rightarrow \{\mathbf{p}(t) \mid t \in \mathcal{D}_{\mathbf{p}} \subset \mathbb{R}\}$,
where usually $(u, v) \in [a, b] \times [c, d]$

Surface normal

- ▶ The normal vector of the tangent plane at the surface point (a vector perpendicular to the plane)
- ▶ Usually a unit vector
- ▶ In different forms, the (non-unit length) surface normal is:
 - ▶ implicit: $\nabla f(x, y, z) = \begin{bmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{bmatrix}$
 - ▶ parametric: $\mathbf{n}(u, v) = \mathbf{p}_u(u, v) \times \mathbf{p}_v(u, v)$

Bilinear surfaces

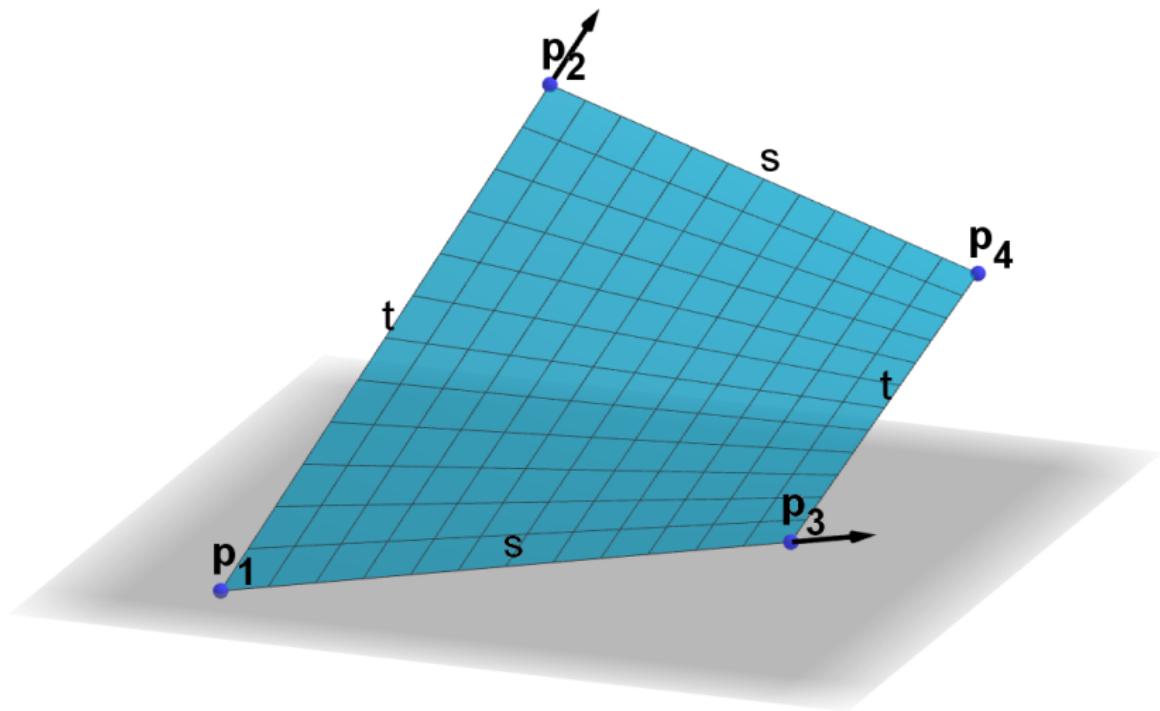
- ▶ Let four control points be, $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4 \in \mathbb{E}^3$
- ▶ Find a simple parametric surface over $[0, 1] \times [0, 1]$ that interpolates the above four points at the corners
- ▶ With three linear interpolations we get a simple surface:

$$\begin{aligned}\mathbf{b}(s, t) = & (1 - t)((1 - s)\mathbf{p}_1 + s\mathbf{p}_3) \\ & + t((1 - s)\mathbf{p}_2 + s\mathbf{p}_4)\end{aligned}$$

where $s, t \in [0, 1]$.

- ▶ Essentially: we "wrote" two segments into the formula of linear interpolation according to t

Bilinear surfaces



In general this is not planar.

Matrix form of curves

- ▶ The parametric representation of a degree n polynomial curve in power basis is $\mathbf{r}(u) = \sum_{i=0}^n \mathbf{a}_i \cdot u^i, u \in \mathbb{R}$
- ▶ Let's pay attention to that $\mathbf{a}_0 \in \mathbb{E}^3$ and $\mathbf{a}_i \in \mathbb{R}^3, i = 1, 2, \dots, n$
- ▶ The above can also be easily written in matrix form, for example in the case of a cubic polynomial

$$\mathbf{r}(u) = \underbrace{[u^3, u^2, u, 1]}_{\mathbf{u}^T} \underbrace{\begin{bmatrix} \mathbf{a}_3 \\ \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix}}_{\mathbf{A}}$$

Matrix form of curves – example

- ▶ The parametric form of $y = x^2$ parabola in power function base

$$\mathbf{p}(u) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} u^2 + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

- ▶ And the matrix form

$$\mathbf{p}(u) = [u^2, u, 1] \begin{bmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix}$$

where

$$\mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Matrix form of curves in different basis

- ▶ If we have a matrix \mathbf{M} , which transforms from the power base to another base, then with the curve coordinates \mathbf{G} in the new base, the curve has the following shape:

$$\mathbf{p}(u) = \mathbf{u}^T \underbrace{\mathbf{M} \cdot \mathbf{G}}_{\mathbf{A}}$$

- ▶ Here, the result of $\mathbf{u}^T \mathbf{M}$ is the other basis, and \mathbf{G} contains the corresponding data about the curve (e.g. in the case of a Bernstein basis, \mathbf{G} consists of Bézier control points).

Matrix form of curves in different basis – example

- ▶ For example, quadratic Bernstein basis polynomials

$$B_0^2(u) = (1 - u)^2 = u^2 - 2u + 1$$

$$B_1^2(u) = 2(1 - u)u = -2u^2 + 2u$$

$$B_2^2(u) = u^2$$

- ▶ Thus, the matrix form of the transformation from the power base to Bernstein base

$$M = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix form of curves in different basis – example

- ▶ Then the other base from our formula

$$[u^2, u, 1] \cdot \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} = [B_2^2(u), B_1^2(u), B_0^2(u)]$$

therefore, the Bézier control points in **G** must be stored in the order **b**₂, **b**₁, **b**₀

- ▶ Then the form of the curve

$$\mathbf{r}(u) = [u^2, u, 1] \cdot \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{b}_2 \\ \mathbf{b}_1 \\ \mathbf{b}_0 \end{bmatrix}$$

*Matrix form of curves in different basis – example

- ▶ Cubic Hermite curve's base

$$\mathbf{r}(u) = H_0^3(u)\mathbf{r}_0 + H_3^3(u)\mathbf{r}_1 + H_1^3(u)\mathbf{t}_0 + H_2^3(u)\mathbf{t}_1$$

$$H_0^3(u) = 2u^3 - 3u^2 + 1, \quad H_1^3(u) = u^3 - 2u^2 + u$$

$$H_2^3(u) = u^3 - u^2, \quad H_3^3(u) = -2u^3 + 3u^2$$

- ▶ Therefore, the cubic Hermite curve in matrix form:

$$\begin{aligned}\mathbf{r}(u) &= [u^3, u^2, u, 1] \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{r}_0 \\ \mathbf{r}_1 \\ \mathbf{t}_0 \\ \mathbf{t}_1 \end{bmatrix} \\ &= [H_0^3(u), H_3^3(u), H_1^3(u), H_2^3(u)] \cdot G = \mathbf{h}^T(u) \cdot G\end{aligned}$$

Change of basis

- ▶ If we know an array containing the geometric data \mathbf{G}_1 of our curve in a base $\mathbf{u}^T \mathbf{M}_1$ and we want to calculate what our curve's coordinates \mathbf{G}_2 will be in the $\mathbf{u}^T \mathbf{M}_2$ base, then we need to solve

$$\mathbf{u}^T \mathbf{M}_1 \mathbf{G}_1 = \mathbf{u}^T \mathbf{M}_2 \mathbf{G}_2$$

system of equations for the unknown variables from \mathbf{G}_2

- ▶ From this the solution:

$$\mathbf{G}_2 = \mathbf{M}_2^{-1} \mathbf{M}_1 \mathbf{G}_1$$

Change of basis – example

- ▶ Let the previous parabola in $\mathbf{p}(u) = [u^2, u, 1] \cdot \begin{bmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix}$ form,
where $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{a}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, let's say we want to draw it with Bézier control points in $[0, 1]$ range
- ▶ Then we need $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2 \in \mathbb{E}^3$ Bézier control points
- ▶ We need to solve

$$[u^2, u, 1] \begin{bmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix} = [u^2, u, 1] \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b}_2 \\ \mathbf{b}_1 \\ \mathbf{b}_0 \end{bmatrix}$$

Change of basis – example

- ▶ That is, the Bezier control points are

$$\begin{bmatrix} \mathbf{b}_2 \\ \mathbf{b}_1 \\ \mathbf{b}_0 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix}$$

after the inverse

$$\begin{bmatrix} \mathbf{b}_2 \\ \mathbf{b}_1 \\ \mathbf{b}_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix}$$

Change of basis – example

- ▶ Thus, the required Bézier control points are:

$$\mathbf{b}_0 = \mathbf{a}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{b}_1 = \mathbf{a}_0 + \frac{1}{2}\mathbf{a}_1 = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$$

$$\mathbf{b}_2 = \mathbf{a}_0 + \mathbf{a}_1 + \mathbf{a}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- ▶ Check: the $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$ are in fact points (point + vector)
- ▶ HW: calculate the Bézier control point of the parabola in $[-2, 2]!$

Matrix form of the surface

- ▶ The parametric representation of a polynomial surface in power basis is $\mathbf{r}(u, v) = \sum_{i=0}^m \sum_{j=0}^n \mathbf{a}_{ij} u^i v^j, u, v \in \mathbb{R}$
- ▶ Let's pay attention to that, $\mathbf{a}_{00} \in \mathbb{E}^3$ and $\mathbf{a}_{ij} \in \mathbb{R}^3, (ij) \neq (00)$
- ▶ In case of a surface which is cubic in both parameter directions

$$\mathbf{r}(u, v) = \underbrace{[u^3, u^2, u, 1]}_{\mathbf{u}^T} \underbrace{\begin{bmatrix} \mathbf{a}_{33} & \mathbf{a}_{32} & \mathbf{a}_{31} & \mathbf{a}_{30} \\ \mathbf{a}_{23} & \mathbf{a}_{22} & \mathbf{a}_{21} & \mathbf{a}_{20} \\ \mathbf{a}_{13} & \mathbf{a}_{12} & \mathbf{a}_{11} & \mathbf{a}_{10} \\ \mathbf{a}_{03} & \mathbf{a}_{02} & \mathbf{a}_{01} & \mathbf{a}_{00} \end{bmatrix}}_A \underbrace{\begin{bmatrix} v^3 \\ v^2 \\ v \\ 1 \end{bmatrix}}_v = \mathbf{u}^T \mathbf{A} \mathbf{v}$$

Surfaces in different basis

- ▶ Similar to what we saw with the curves, writing down the matrix form of a surface in a general basis gives the following:

$$\mathbf{r}(u, v) = \mathbf{u}^T \cdot \mathbf{M} \cdot \mathbf{G} \cdot \mathbf{N}^T \cdot \mathbf{v} ,$$

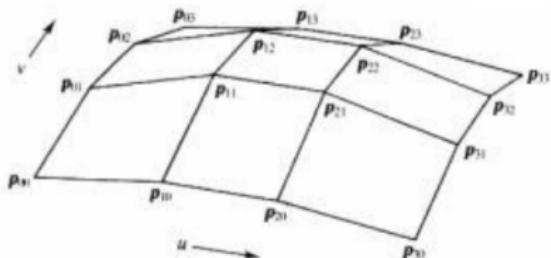
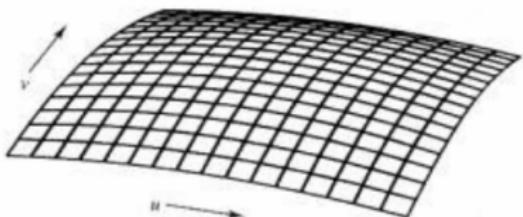
where \mathbf{M}, \mathbf{N} are the m and n -th power \rightarrow general basis conversion matrices

Bézier surface

- The form of an $n \times m$ -th degree Bézier surface defined by $\mathbf{b}_{ij} \in \mathbb{E}^3$, $i = 0, \dots, n, j = 0, \dots, m$ control polygon

$$\mathbf{b}(u, v) = \sum_{j=0}^m \sum_{i=0}^n B_i^n(u) B_j^m(v) \mathbf{b}_{ij}$$

where $u, v \in [0, 1]$.



*Bézier surface – derivatives

- ▶ Using what we learned with curves, at u parameter direction:

$$\begin{aligned}\partial_u \mathbf{b}(u, v) &= \sum_{j=0}^m \partial_u \left(\sum_{i=0}^n B_i^n(u) \mathbf{b}_{ij} \right) B_j^m(v) \\ &= n \sum_{j=0}^m \sum_{i=0}^{n-1} \Delta^{1,0} \mathbf{b}_{ij} B_i^{n-1}(u) B_j^m(v)\end{aligned}$$

where $\Delta^{1,0} \mathbf{b}_{i,j} = \mathbf{b}_{i+1,j} - \mathbf{b}_{i,j}$

*Bézier surface – derivatives

- ▶ Same with v

$$\partial_v \mathbf{b}(u, v) = m \sum_{j=0}^{m-1} \sum_{i=0}^n \Delta^{0,1} \mathbf{b}_{ij} B_i^n(u) B_j^{m-1}(v)$$

where $\Delta^{0,1} \mathbf{b}_{i,j} = \mathbf{b}_{i,j+1} - \mathbf{b}_{i,j}$

*Bézier surface – derivatives

- ▶ We call the plane spanned by the partial derivatives at the given surface point, *tangent plane*
- ▶ Its normal – which is also the normal of our surface at the point corresponding to the given parameter values – is $[\partial_u \mathbf{p} \times \partial_v \mathbf{p}]_0$, which can be nicely described in the vertices with the control points

*Bézier surface – derivatives

Using what you learned with the curves, the derivatives generally look like this:

$$\partial_{u^r, v^s} \mathbf{b}(u, v) = \frac{m! n!}{(n-r)!(m-s)!} \sum_{j=0}^{m-s} \sum_{i=0}^{n-r} \Delta^{r,s} \mathbf{b}_{ij} B_i^{n-r}(u) B_j^{m-s}(v)$$

where

$$\begin{aligned} \Delta^{i,j} \mathbf{b}_{i,j} &= \Delta^{i-1,j} \mathbf{b}_{i+1,j} - \Delta^{i-1,j} \mathbf{b}_{i,j} \\ &= \Delta^{i,j-1} \mathbf{b}_{i,j+1} - \Delta^{i,j-1} \mathbf{b}_{i,j} \end{aligned}$$

Spline surface

- ▶ We join together lower degree surface pieces (patches)
- ▶ Pay attention to the continuity of the connections
- ▶ More on this: Geometric Modelling, Surface and Body modeling - MSc.

Intersection with ray

- ▶ For example, when we select with the mouse, it may be necessary to find the intersection of our ray $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{v}$ and the surface $\mathbf{b}(u, v)$
- ▶ So we need to solve the following system of equations:
 $\mathbf{p}(t) = \mathbf{b}(u, v)$, where the unknowns are t, u, v (let's pay attention to their restrictions!)
- ▶ multi variable Newton, etc. ...

Subdivision

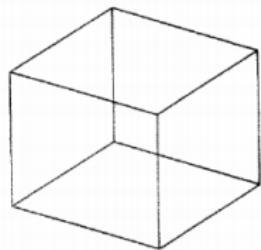
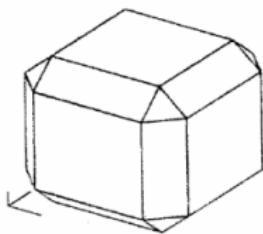
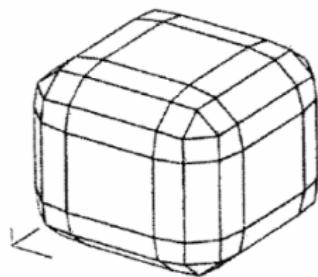
SIGGRAPH Subdivision tutorial for those interested in the topic:

[http:](http://www.mrl.nyu.edu/publications/subdiv-course2000/)

[//www.mrl.nyu.edu/publications/subdiv-course2000/](http://www.mrl.nyu.edu/publications/subdiv-course2000/)

Subdivision surfaces – Doo-Sabin

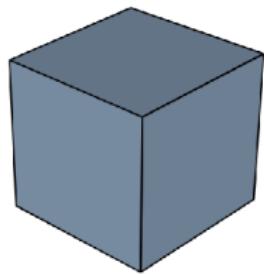
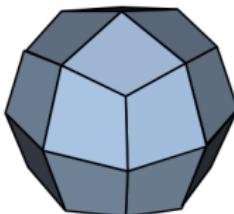
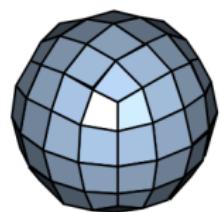
Vertex split algorithm



Subdivision surfaces – Catmull-Clark

Face split algorithm

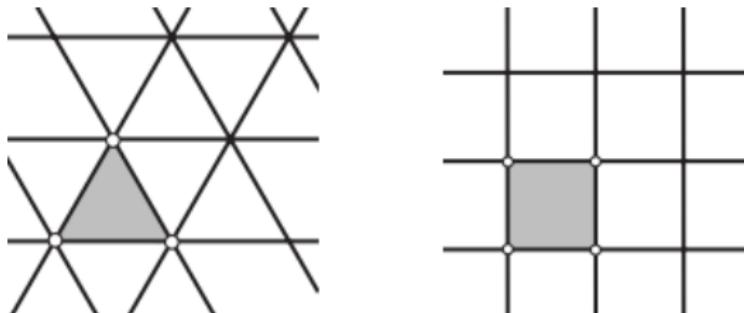
2001: Catmull received an Oscar "for significant advancements to the field of motion picture rendering as exemplified in Pixar's RenderMan"



Concepts – schema mesh-type

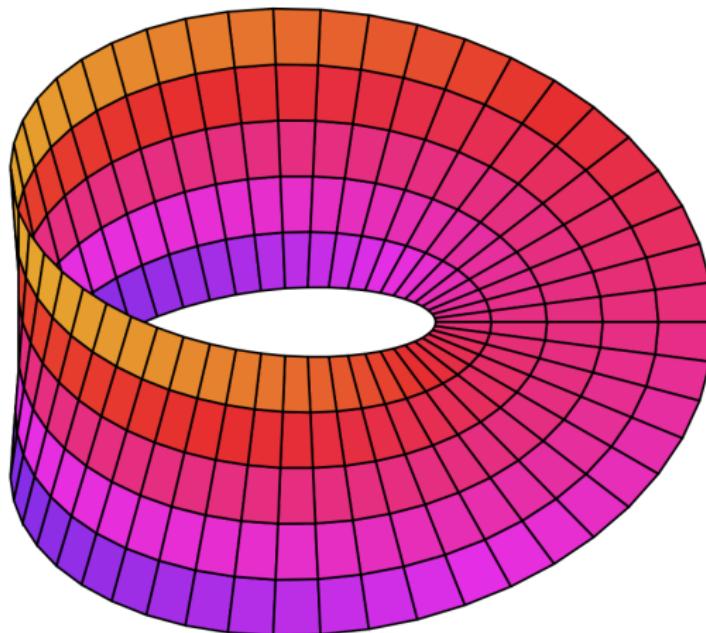
- ▶ Most subdivision schemes are based on some regular subdivision/refinement scheme
- ▶ When we talk about the mesh type of a scheme, we mean this parent scheme
- ▶ In a plane we can cover points in a regular grid with regular triangles, squares, or regular hexagons.
- ▶ Accordingly, we call a scheme *triangle*-, *quadrilateral*- or *hexagon-based* (in practice, the latter is rare)

Mesh-type

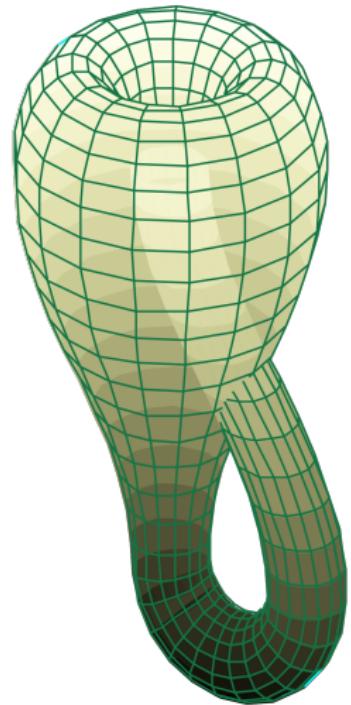


- ▶ Be careful: you cannot cover everything "aesthetically" (joining along whole edges) with 6-regular triangle or 4-regular quadrilateral mesh without degenerate cases!
- ▶ The above regular topologies can be used to describe the infinite plane, the infinite cylindrical surface, or surfaces with topology like the torus's
- ▶ For example, surfaces with topology like the sphere's cannot be covered

Mesh-type – Möbius



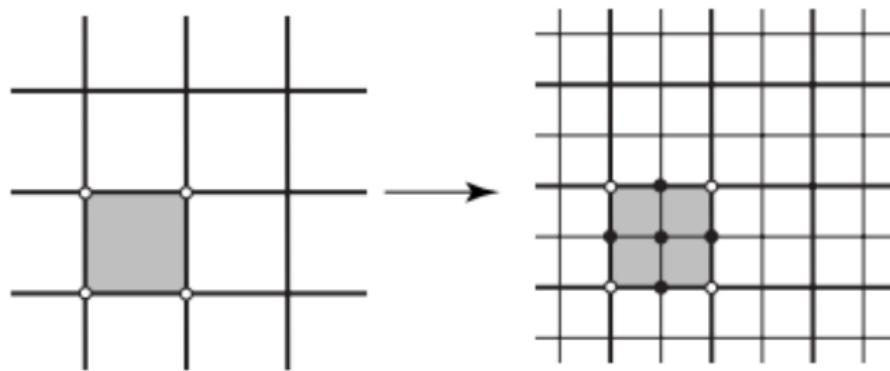
Mesh-type – Klein bottle



Concepts – face-split (primal)

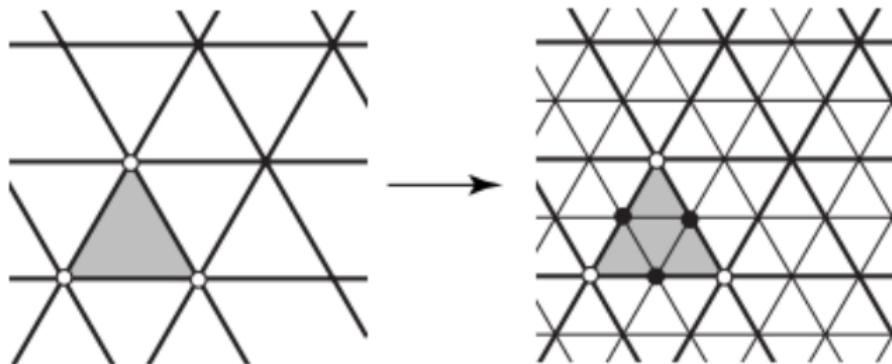
- ▶ Each face corresponding to its mesh type is divided into four
- ▶ We keep the vertices of the mesh from the previous step (but we can change their position – if we don't change them, we are talking about an interpolation scheme)
- ▶ We insert new vertices on each edge (thus splitting them in two)
- ▶ In the case of quadrilateral-based schemes, we also derive a new vertex from the face

Face-split on 4-regular mesh



Face split for quads

Face-split on 6-regular mesh



Face split for triangles

Concepts – face-split

Even vertices:

- ▶ In face-split schemes, the vertices of the coarser resolution mesh that correspond to the vertices of the finer mesh
- ▶ White on the previous figure

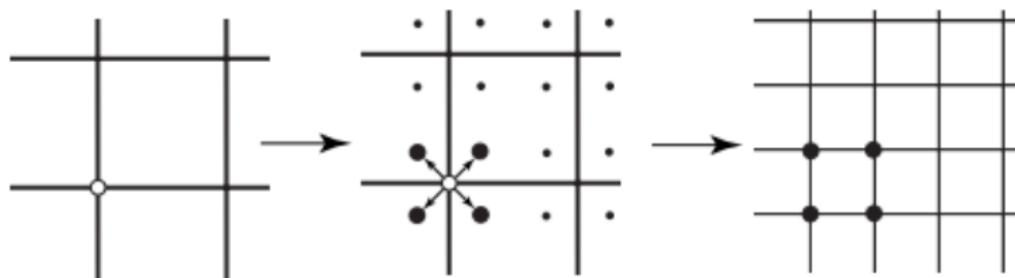
Odd vertices:

- ▶ Newly created vertices that do not correspond to any vertices from the previous refinement level
- ▶ Black on the previous figure

Concepts – vertex-split (dual)

- ▶ In this case, a new vertex is created from each vertex for each of the faces neighboring the original vertex
- ▶ A new face is directly derived from the old face
- ▶ Along the edges we get new faces (connecting new vertices, which are created from the endpoints of an edge, across the two faces that are divided by that edge)
- ▶ Instead of the old vertices, we get a new face with new vertices.

Vertex-split on 4-regular mesh



Vertex split for quads

Concepts – face- and vertex-split

- ▶ On a regular quadrilateral mesh, in both cases the new mesh will be 4-regular → maintains the topology!
- ▶ Pay attention: with regular triangle meshes, after vertex-split, we also get triangles, quadrilaterals and hexagons!

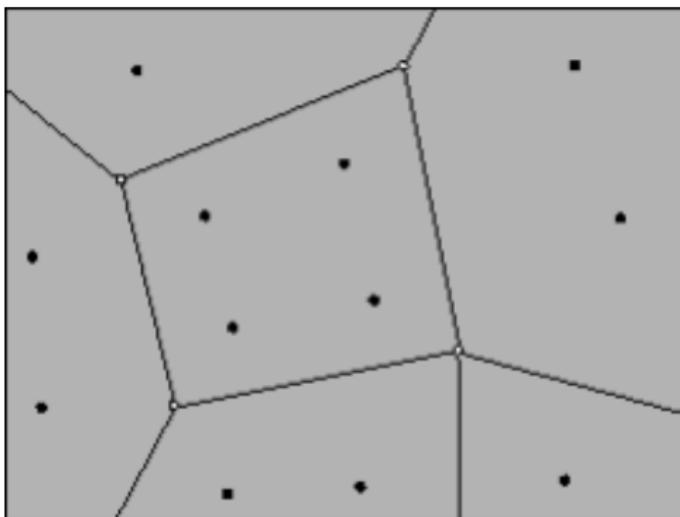
Doo-Sabin

Original article:

<https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf>

Short description: <http://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Doo-Sabin.pdf>

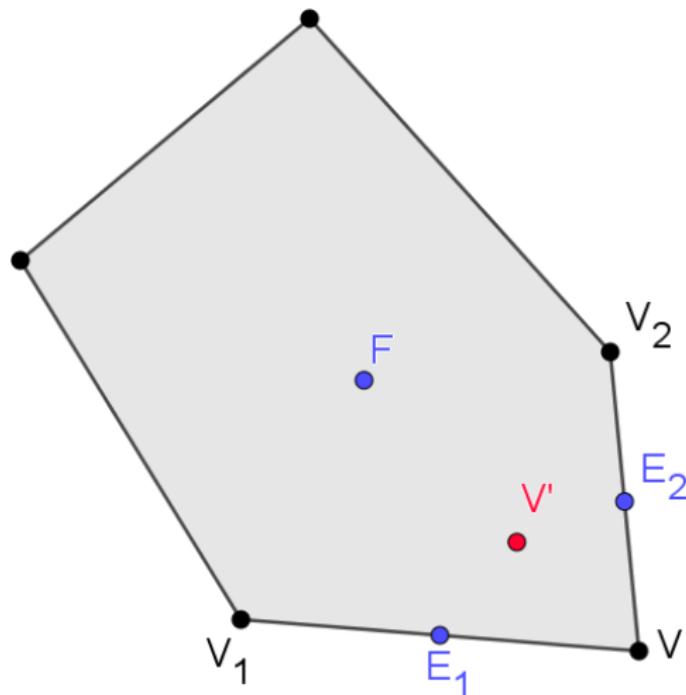
Doo-Sabin – calculating new points



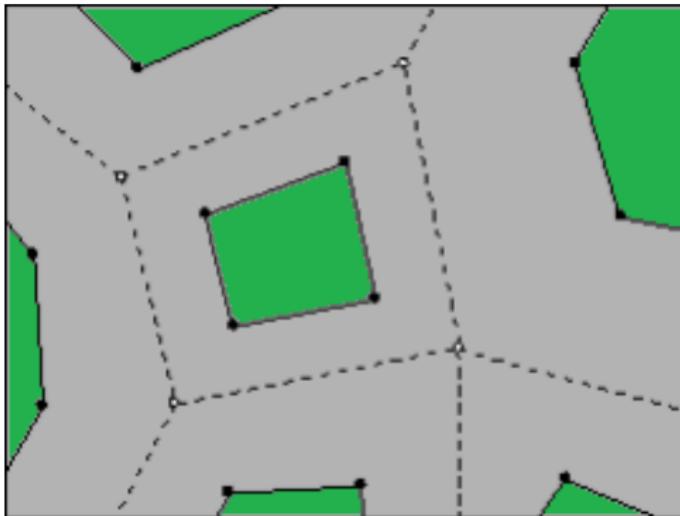
Doo-Sabin – calculating new points

- ▶ Vertex split algorithm: for every face and for each of its vertices we calculate a new vertex
- ▶ Let the given vertex be $V \in \mathbb{E}^3$, its two neighbours on the face V_1 and $V_2 \in \mathbb{E}^3$, and the centroid of the face $F \in \mathbb{E}^3$
- ▶ Then the two edge vertices are $E_1 = \frac{1}{2}V + \frac{1}{2}V_1$ and $E_2 = \frac{1}{2}V + \frac{1}{2}V_2$
- ▶ The new vertex is $V' = \frac{1}{4}V + \frac{1}{4}E_1 + \frac{1}{4}E_2 + \frac{1}{4}F$

Doo-Sabin

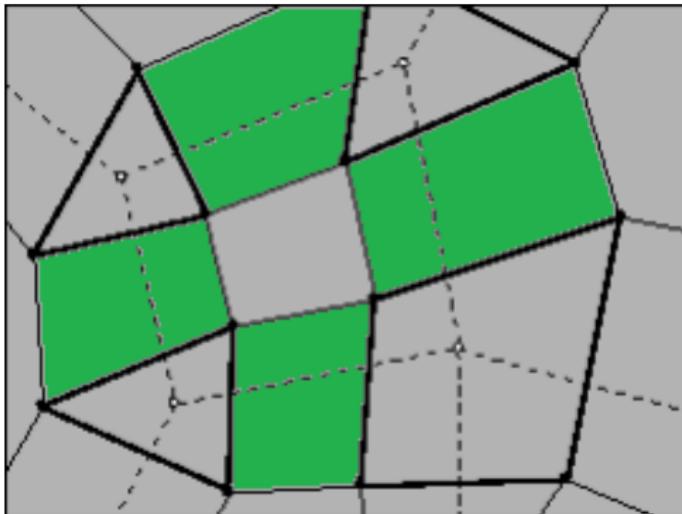


Doo-Sabin – faces from faces



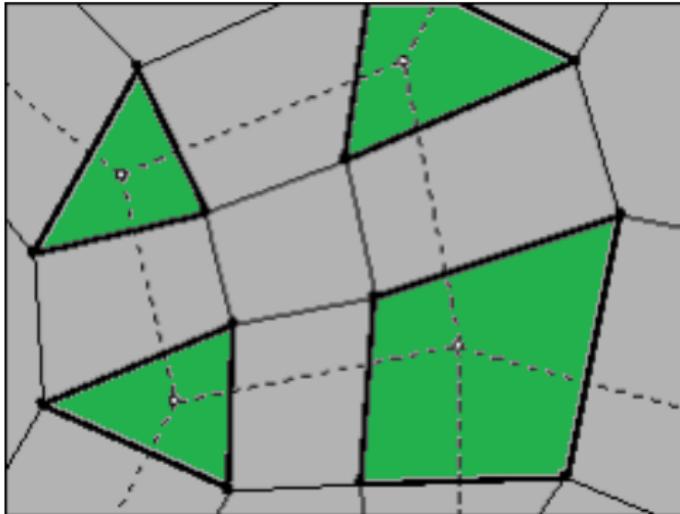
Number of sides equals the original

Doo-Sabin – faces from edges



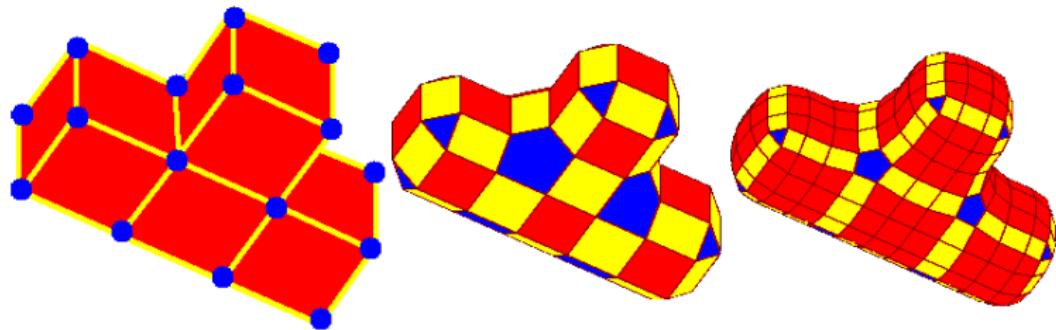
Always a quadrilateral

Doo-Sabin – faces from vertices



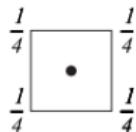
Number of sides equals the valency of the vertex

Doo-Sabin

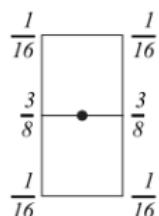


Be careful, the resulting polygons may not be planar!

Catmull-Clark



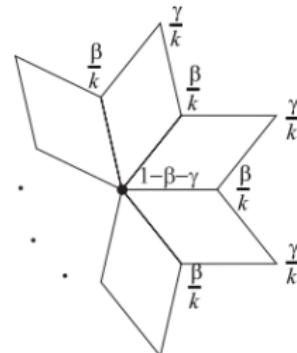
Mask for a face vertex



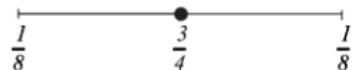
Mask for an edge vertex

Mask for a boundary odd vertex

$$\beta = \frac{3}{2k}$$
$$\gamma = \frac{1}{4k}$$



Interior



Crease and boundary

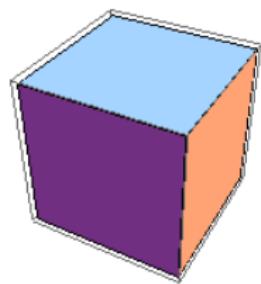
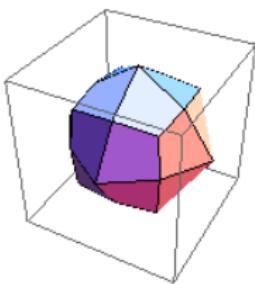
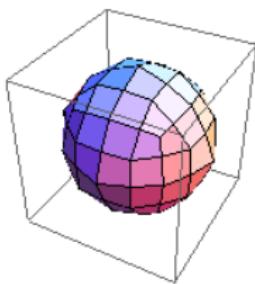
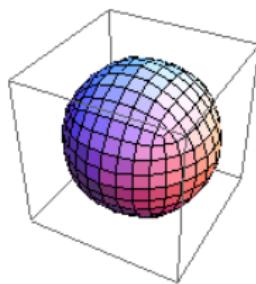
a. Masks for odd vertices

b. Mask for even vertices

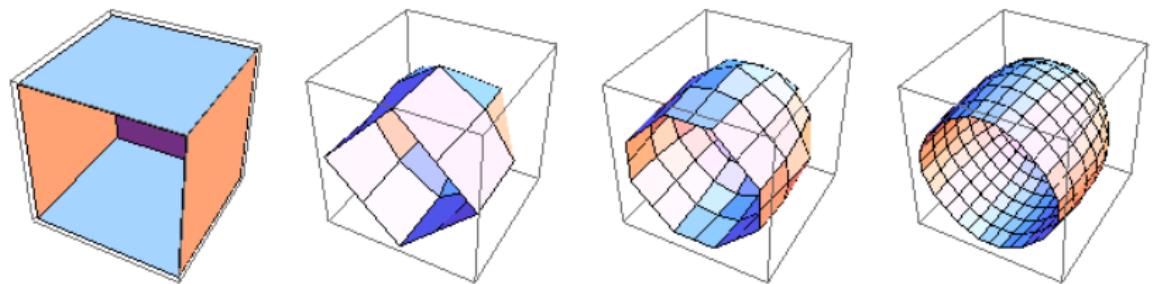
Catmull-Clark

- ▶ Face split algorithm, defined for quadrilateral meshes
- ▶ The new vertex positions are the result of the weighted average of the vertices of the neighboring faces. The weights are shown in the previous figure.
- ▶ A new face vertex is the centroid of the face
- ▶ A new edge vertex takes into account the two endpoints of the original edge with a weight of $\frac{3}{8}$, and the other vertices on the same face with a weight of $\frac{1}{16}$
- ▶ For even vertices the neighboring vertices have a larger weight than the further ones. The value k indicated in the figure is the number of faces adjacent to the vertex.
- ▶ We can also handle the edge of the mesh (*boundary*), and in the same way, if you want to leave a sharp edge in the model (*crease*)

Catmull-Clark



Catmull-Clark – boundary



Catmull-Clark – crease

Catmull-Clark with Sharp Creases

