
Computer Graphics

Sipos Ágoston
siposagoston@inf.elte.hu

Eötvös Loránd University
Faculty of Informatics

2025-2026. Fall semester



Table of contents

Parametric surfaces
Bilinear surfaces
Polynomial tensor product surfaces
Bézier surfaces
Spline surfaces
Operations with surfaces

Subdivision surfaces
Motivation
Doo-Sabin
Catmull-Clark



Representing surfaces

▶ Explicit: z = f(x, y) → {(x, f(x)) | x ∈ Df ⊂ R}
▶ Implicit: f(x, y, z) = 0 →

{
x ∈ Df ⊂ R2 | f(x) = 0

}
▶ Parametric: p(u, v) =

x(u, v)
y(u, v)
z(u, v)

 → {p(t) | t ∈ Dp ⊂ R} ,

where usually (u, v) ∈ [a, b]× [c, d]



Surface normal

▶ The normal vector of the tangent plane at the surface point
(a vector perpendicular to the plane)

▶ Usually a unit vector
▶ In different forms, the (non-unit length) surface normal is:

▶ implicit: ∇f(x, y, z) =

fx(x, y, z)
fy(x, y, z)
fz(x, y, z)


▶ parametric: n(u, v) = pu(u, v)× pv(u, v)



Bilinear surfaces

▶ Let four control points be, p1,p2,p3,p4 ∈ E3

▶ Find a simple parametric surface over [0, 1]× [0, 1] that
interpolates the above four points at the corners

▶ With three linear interpolations we get a simple surface:

b(s, t) = (1 − t)((1 − s)p1 + sp3)

+t((1 − s)p2 + sp4)

where s, t ∈ [0, 1].
▶ Essentially: we ”wrote” two segments into the formula of

linear interpolation according to t



Bilinear surfaces

In general this is not planar.



Matrix form of curves

▶ The parametric representation of a degree n polynomial curve
in power basis is r(u) =

∑n
i=0 ai · ui, u ∈ R

▶ Let’s pay attention to that a0 ∈ E3 and ai ∈ R3, i = 1, 2, .., n
▶ The above can also be easily written in matrix form, for

example in the case of a cubic polynomial

r(u) = [u3, u2, u, 1]︸ ︷︷ ︸
uT


a3
a2
a1
a0


︸ ︷︷ ︸

A



Matrix form of curves – example

▶ The parametric form of y = x2 parabola in power function
base

p(u) =
[
0
1

]
u2 +

[
1
0

]
u

▶ And the matrix form

p(u) = [u2, u, 1]

a2
a1
a0


where

a2 =

[
0
1

]
, a1 =

[
1
0

]
, a0 =

[
0
0

]



Matrix form of curves in different basis

▶ If we have a matrix M, which transforms from the power base
to another base, then with the curve coordinates G in the new
base, the curve has the following shape:

p(u) = uT M · G︸ ︷︷ ︸
A

▶ Here, the result of uTM is the other basis, and G contains the
corresponding data about the curve (e.g. in the case of a
Bernstein basis, G consists of Bézier control points).



Matrix form of curves in different basis – example

▶ For example, quadratic Bernstein basis polynomials

B2
0(u) = (1 − u)2 = u2 − 2u + 1

B2
1(u) = 2(1 − u)u = −2u2 + 2u

B2
2(u) = u2

▶ Thus, the matrix form of the transformation from the power
base to Bernstein base

M =

1 −2 1
0 2 −2
0 0 1





Matrix form of curves in different basis – example

▶ Then the other base from our formula

[u2, u, 1] ·

1 −2 1
0 2 −2
0 0 1

 = [B2
2(u),B2

1(u),B2
0(u)]

therefore, the Bézier control points in G must be stored in the
order b2,b1,b0

▶ Then the form of the curve

r(u) = [u2, u, 1] ·

1 −2 1
0 2 −2
0 0 1

 ·

b2
b1
b0





*Matrix form of curves in different basis – example

▶ Cubic Hermite curve’s base
r(u) = H3

0(u)r0 + H3
3(u)r1 + H3

1(u)t0 + H3
2(u)t1

H3
0(u) = 2u3 − 3u2 + 1 , H3

1(u) = u3 − 2u2 + u
H3

2(u) = u3 − u2 , H3
3(u) = −2u3 + 3u2

▶ Therefore, the cubic Hermite curve in matrix form:

r(u) = [u3, u2, u, 1]


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0




r0
r1
t0
t1


= [H3

0(u),H3
3(u),H3

1(u),H3
2(u)] · G = hT(u) · G



Change of basis

▶ If we know an array containing the geometric data G1 of our
curve in a base uTM1 and we want to calculate what our
curve’s coordinates G2 will be in the uTM2 base, then we
need to solve

uTM1G1 = uTM2G2

system of equations for the unknown variables from G2
▶ From this the solution:

G2 = M−1
2 M1G1



Change of basis – example

▶ Let the previous parabola in p(u) = [u2, u, 1] ·

a2
a1
a0

 form,

where a2 =

[
0
1

]
, a1 =

[
1
0

]
, a0 =

[
0
0

]
, let’s say we want to

draw it with Bézier control points in [0, 1] range
▶ Then we need b0,b1,b2 ∈ E3 Bézier control points
▶ We need to solve

[u2, u, 1]

a2
a1
a0

 = [u2, u, 1]

1 −2 1
0 2 −2
0 0 1

b2
b1
b0





Change of basis – example

▶ That is, the Bezier control points areb2
b1
b0

 =

1 −2 1
0 2 −2
0 0 1

−1 a2
a1
a0


after the inverse b2

b1
b0

 =

1 1 1
0 1

2 1
0 0 1

a2
a1
a0





Change of basis – example

▶ Thus, the required Bézier control points are:

b0 = a0 =

[
0
0

]
b1 = a0 +

1
2a1 =

[1
2
0

]
b2 = a0 + a1 + a2 =

[
1
1

]

▶ Check: the b0,b1,b2 are in fact points (point + vector)
▶ HW: calculate the Bézier control point of the parabola in

[−2, 2]!



Matrix form of the surface

▶ The parametric representation of a polynomial surface in
power basis is r(u, v) =

∑m
i=0

∑n
j=0 aijuivj, u, v ∈ R

▶ Let’s pay attention to that, a00 ∈ E3 and aij ∈ R3, (ij) ̸= (00)
▶ In case of a surface which is cubic in both parameter directions

r(u, v) = [u3, u2, u, 1]︸ ︷︷ ︸
uT


a33 a32 a31 a30
a23 a22 a21 a20
a13 a12 a11 a10
a03 a02 a01 a00


︸ ︷︷ ︸

A


v3

v2

v
1


︸ ︷︷ ︸

v

= uTAv



Surfaces in different basis

▶ Similar to what we saw with the curves, writing down the
matrix form of a surface in a general basis gives the following:

r(u, v) = uT · M · G · NT · v ,

where M,N are the m and n-th power → general basis
conversion matrices



Bézier surface

▶ The form of an n × m-th degree Bézier surface defined by
bij ∈ E3, i = 0, .., n, j = 0, ..,m control polygon

b(u, v) =
m∑

j=0

n∑
i=0

Bn
i (u)Bm

j (v)bij

where u, v ∈ [0, 1].



*Bézier surface – derivatives

▶ Using what we learned with curves, at u parameter direction:

∂ub(u, v) =
m∑

j=0
∂u(

n∑
i=0

Bn
i (u)bij)Bm

j (v)

= n
m∑

j=0

n−1∑
i=0

∆1,0bijBn−1
i (u)Bm

j (v)

where ∆1,0bi,j = bi+1,j − bi,j



*Bézier surface – derivatives

▶ Same with v

∂vb(u, v) = m
m−1∑
j=0

n∑
i=0

∆0,1bijBn
i (u)Bm−1

j (v)

where ∆0,1bi,j = bi,j+1 − bi,j



*Bézier surface – derivatives

▶ We call the plane spanned by the partial derivatives at the
given surface point, tangent plane

▶ Its normal – which is also the normal of our surface at the
point corresponding to the given parameter values – is
[∂up × ∂vp]0, which can be nicely described in the vertices
with the control points



*Bézier surface – derivatives

Using what you learned with the curves, the derivatives generally
look like this:

∂ur,vsb(u, v) = m!n!
(n − r)!(m − s)!

m−s∑
j=0

n−r∑
i=0

∆r,sbijBn−r
i (u)Bm−s

j (v)

where

∆i,jbi,j = ∆i−1,jbi+1,j −∆i−1,jbi,j

= ∆i,j−1bi,j+1 −∆i,j−1bi,j



Spline surface

▶ We join together lower degree surface pieces (patches)
▶ Pay attention to the continuity of the connections
▶ More on this: Geometric Modelling, Surface and Body

modeling - MSc.



Intersection with ray

▶ For example, when we select with the mouse, it may be
necessary to find the intersection of our ray p(t) = p0 + tv
and the surface b(u, v)

▶ So we need to solve the following system of equations:
p(t) = b(u, v), where the unknowns are t, u, v (let’s pay
attention to their restrictions!)

▶ multi variable Newton, etc. ...



Subdivision

SIGGRAPH Subdivision tutorial for those interested in the topic:
http:
//www.mrl.nyu.edu/publications/subdiv-course2000/

http://www.mrl.nyu.edu/publications/subdiv-course2000/
http://www.mrl.nyu.edu/publications/subdiv-course2000/


Subdivision surfaces – Doo-Sabin

Vertex split algorithm



Subdivision surfaces – Catmull-Clark

Face split algorithm

2001: Catmull received an Oscar ”for significant advancements to
the field of motion picture rendering as exemplified in Pixar’s
RenderMan”



Concepts – schema mesh-type

▶ Most subdivision schemes are based on some regular
subdivision/refinement scheme

▶ When we talk about the mesh type of a scheme, we mean this
parent scheme

▶ In a plane we can cover points in a regular grid with regular
triangles, squares, or regular hexagons.

▶ Accordingly, we call a scheme triangle-, quadrilateral- or
hexagon-based (in practice, the latter is rare)



Mesh-type

▶ Be careful: you cannot cover everything ”aesthetically”
(joining along whole edges) with 6-regular triangle or 4-regular
quadrilateral mesh without degenerate cases!

▶ The above regular topologies can be used to describe the
infinite plane, the infinite cylindrical surface, or surfaces with
topology like the torus’s

▶ For example, surfaces with topology like the sphere’s cannot
be covered



Mesh-type – Möbius



Mesh-type – Klein bottle



Concepts – face-split (primal)

▶ Each face corresponding to its mesh type is divided into four
▶ We keep the vertices of the mesh from the previous step (but

we can change their position – if we don’t change them, we
are talking about an interpolation scheme)

▶ We insert new vertices on each edge (thus splitting them in
two)

▶ In the case of quadrilateral-based schemes, we also derive a
new vertex from the face



Face-split on 4-regular mesh



Face-split on 6-regular mesh



Concepts – face-split

Even vertices:
▶ In face-split schemes, the vertices of the coarser resolution

mesh that correspond to the vertices of the finer mesh
▶ White on the previous figure

Odd vertices:
▶ Newly created vertices that do not correspond to any vertices

from the previous refinement level
▶ Black on the previous figure



Concepts – vertex-split (dual)

▶ In this case, a new vertex is created from each vertex for each
of the faces neighboring the original vertex

▶ A new face is directly derived from the old face
▶ Along the edges we get new faces (connecting new vertices,

which are created from the endpoints of an edge, across the
two faces that are divided by that edge)

▶ Instead of the old vertices, we get a new face with new
vertices.



Vertex-split on 4-regular mesh



Concepts – face- and vertex-split

▶ On a regular quadrilateral mesh, in both cases the new mesh
will be 4-regular → maintains the topology!

▶ Pay attention: with regular triangle meshes, after vertex-split,
we also get triangles, quadrilaterals and hexagons!



Doo-Sabin

Original article:
https://web.archive.org/web/20110707175713/http:
//trac2.assembla.com/DooSabinSurfaces/export/12/
trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf

Short description: http://www.cs.unc.edu/~dm/UNC/COMP258/
LECTURES/Doo-Sabin.pdf

https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf
https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf
https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf
http://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Doo-Sabin.pdf
http://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Doo-Sabin.pdf


Doo-Sabin – calculating new points



Doo-Sabin – calculating new points

▶ Vertex split algorithm: for every face and for each of its
vertices we calculate a new vertex

▶ Let the given vertex be V ∈ E3, its two neighbours on the face
V1 and V2 ∈ E3, and the centroid of the face F ∈ E3

▶ Then the two edge vertices are E1 = 1
2V + 1

2V1 and
E2 = 1

2V + 1
2V2

▶ The new vertex is V′ = 1
4V + 1

4E1 +
1
4E2 +

1
4F



Doo-Sabin



Doo-Sabin – faces from faces

Number of sides equals the original



Doo-Sabin – faces from edges

Always a quadrilateral



Doo-Sabin – faces from vertices

Number of sides equals the valency of the vertex



Doo-Sabin

Be careful, the resulting polygons may not be planar!



Catmull-Clark



Catmull-Clark

▶ Face split algorithm, defined for quadrilateral meshes
▶ The new vertex positions are the result of the weighted

average of the vertices of the neighboring faces. The weights
are shown in the previous figure.

▶ A new face vertex is the centroid of the face
▶ A new edge vertex takes into account the two endpoints of

the original edge with a weight of 3
8 , and the other vertices on

the same face with a weight of 1
16

▶ For even vertices the neighboring vertices have a larger weight
than the further ones. The value k indicated in the figure is
the number of faces adjacent to the vertex.

▶ We can also handle the edge of the mesh (boundary), and in
the same way, if you want to leave a sharp edge in the model
(crease)



Catmull-Clark



Catmull-Clark – boundary



Catmull-Clark – crease


	Parametric surfaces
	Bilinear surfaces
	Polynomial tensor product surfaces
	Bézier surfaces
	Spline surfaces
	Operations with surfaces

	Subdivision surfaces
	Motivation
	Doo-Sabin
	Catmull-Clark


