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Representing surfaces

» Explicit: z=flx,y) — {(x,fx))|xeDrC R}
> Implicit: ix,y,z) =0 — {xeDfCR?|Ax)=0}
x(u, v)
» Parametric: p(u,v) = |:ygu, vi] — {p(t)| te Dy C R},
where usually (u,v) € [.:bL]I’>‘</ [c,d]



Surface normal

» The normal vector of the tangent plane at the surface point
(a vector perpendicular to the plane)

» Usually a unit vector
» In different forms, the (non-unit length) surface normal is:

(% y,2)
> implicit: VA(x,y,z) = |f(x,y,2)
f(x,y, 2)
» parametric: n(u, v) = pu(u, v) X p,(u, v)



Bilinear surfaces

> Let four control points be, p1, p2, p3, ps € E3

» Find a simple parametric surface over [0, 1] x [0, 1] that
interpolates the above four points at the corners

» With three linear interpolations we get a simple surface:

b(s. ) = (1 — £)((1 — s)py + p3)
+H{(1 — 5)p2 + 5Pa)

where s, t € [0, 1].

P> Essentially: we "wrote” two segments into the formula of
linear interpolation according to t



Bilinear surfaces

In general this is not planar.



Matrix form of curves

» The parametric representation of a degree n polynomial curve
in power basis is r(u) = Y7 ja;- v/, ueR

» Let's pay attention to that ag € E3 and a; € R3,i=1,2,...n

» The above can also be easily written in matrix form, for
example in the case of a cubic polynomial

r(u) = [, 12, u, 1]
—_——

ul



Matrix form of curves — example

» The parametric form of y = x* parabola in power function
base
0] » 1

» And the matrix form

az
p(u) = [v?, u,1] |
a0

[l o[} o ]

where



Matrix form of curves in different basis

> If we have a matrix M, which transforms from the power base
to another base, then with the curve coordinates G in the new
base, the curve has the following shape:

—ulM.
p(u) =u MAG

» Here, the result of u’M is the other basis, and G contains the
corresponding data about the curve (e.g. in the case of a
Bernstein basis, G consists of Bézier control points).



Matrix form of curves in different basis — example

» For example, quadratic Bernstein basis polynomials

Bi(u)=(1-u?=v"—2u+1
B (u) = 2(1 — u)u = —2u* 4 2u

» Thus, the matrix form of the transformation from the power
base to Bernstein base

1 -2 1
M=1{0 2 =2
0 0 1



Matrix form of curves in different basis — example

» Then the other base from our formula

1 -2 1
[, u,1]- |0 2 —2| = [B3(u), Bi(u), Bj(u)]
0 0 1

therefore, the Bézier control points in G must be stored in the
order b2, b1, bo

» Then the form of the curve

1
r(u)=[?u1]- [0 2 —2|-|b;
0



*Matrix form of curves in different basis — example

» Cubic Hermite curve's base
r(u) = Hg(u)ro + Hg(u)rl + H?(u)to + Hg(u)tl

Hy(u) =20 = 3> +1, H3(u)=v* — 20 +u
H3(u) = o* — ?, H3(u) = —2u° + 30

» Therefore, the cubic Hermite curve in matrix form:

-3 3 =2 -—1| |r
— L3 ,2 1
r(U)—[U,U7u,1] O 0 1 0 tO

1 0 0 0 t;



Change of basis

» If we know an array containing the geometric data Gy of our
curve in a base u’M; and we want to calculate what our
curve's coordinates G, will be in the u”M, base, then we

need to solve
uTM1G1 = UTM2G2

system of equations for the unknown variables from G,

» From this the solution:

Gy = M;'M;G;



Change of basis — example

az
» Let the previous parabola in p(u) = [v?,u,1] - |a1| form,
ag
O 1 O 1
where ay = 113 = |o 3= || let's say we want to
draw it with Bézier control points in [0, 1] range
» Then we need bg, by, by € E3 Bézier control points

» We need to solve
ar 1 -2 1 b,

[, u,1] |a1| = [, u,1] |0 2 —2| |bs
ag 0 0 1 bg



Change of basis — example

» That is, the Bezier control points are

b, 1 -2 1
bi| =10 2 -2
bg 0 O 1
after the inverse
b, 1 11
bi|=1]0 1 1
bg 0 01

az
aj
a0



Change of basis — example

» Thus, the required Bézier control points are:

0
.

L
b1:ao+§a1: |:0:|

1
b =ap+a; +ax = [1]

» Check: the by, by, by are in fact points (point + vector)

» HW: calculate the Bézier control point of the parabola in
[_27 2]I



Matrix form of the surface

» The parametric representation of a polynomial surface in

power basis is r(u,v) =3 7> 1, aju'v, u,veR

> Let's pay attention to that, ago € E3 and a;; € R3, (i) # (00)

P In case of a surface which is cubic in both parameter directions

433 as2 aszr asp v
a3 axp ap; a V2

r(u,v) = [0, P, 0 1] |52 T2 T2 90 =u’Av
N——— (313 d12 di11 Aa10 v

1

-
u ap3 ap2 Aap1 Aoo

——
v



Surfaces in different basis

» Similar to what we saw with the curves, writing down the
matrix form of a surface in a general basis gives the following:

r(u,v) =u’ -M-G-NT.v |

where M, N are the m and n-th power — general basis
conversion matrices



Bézier surface

» The form of an n x m-th degree Bézier surface defined by
b; € E3,i=0,..,n,j=0,..,m control polygon

m n

b(u,v) => > B(u)Bf'(v)b;

j=0 i=0

where u, v € [0, 1].




*Bézier surface — derivatives

» Using what we learned with curves, at u parameter direction:

m n

> 0> Bl(wby)B](Y)
=0

=0

Oub(u, v)

I
-

m n

n> > AYb;B N u)BP(v)
j=0 i

Il
o

where Al’ob/,j = b,‘.,.]_’j — b,"j



*Bézier surface — derivatives

» Same with v

m—1 n

() =m> > A%b;BI(u)

Jj=0 i=0

where Ao’lbi,j = biJJrl - b,‘J

Bm 1()



*Bézier surface — derivatives

> We call the plane spanned by the partial derivatives at the
given surface point, tangent plane

» Its normal — which is also the normal of our surface at the
point corresponding to the given parameter values — is

[Oup X OupJo, which can be nicely described in the vertices
with the control points



*Bézier surface — derivatives

Using what you learned with the curves, the derivatives generally

look like this:
mlnl — r,s n— I’ m—
au’,vsb(u, V) = (n_ i —5 | ZZA b,JB B 5( )
j=0 i=0
where

A”Jb,',j = A’_l’Jb,‘JrLj — A'_l*/b,',j
i1 Fi1
= AMlp ., — AY-lpy



Spline surface

» We join together lower degree surface pieces (patches)
P> Pay attention to the continuity of the connections

» More on this: Geometric Modelling, Surface and Body
modeling - MSc.



Intersection with ray

» For example, when we select with the mouse, it may be
necessary to find the intersection of our ray p(t) = po + tv
and the surface b(u, v)

» So we need to solve the following system of equations:
p(t) = b(u, v), where the unknowns are t, u, v (let's pay
attention to their restrictions!)

» multi variable Newton, etc. ...



Subdivision

SIGGRAPH Subdivision tutorial for those interested in the topic:
http:
//www.mrl.nyu.edu/publications/subdiv-course2000/


http://www.mrl.nyu.edu/publications/subdiv-course2000/
http://www.mrl.nyu.edu/publications/subdiv-course2000/

Subdivision surfaces — Doo-Sabin

Vertex split algorithm



Subdivision surfaces — Catmull-Clark

Face split algorithm

2001: Catmull received an Oscar "for significant advancements to
the field of motion picture rendering as exemplified in Pixar's

RenderMan”




Concepts — schema mesh-type

» Most subdivision schemes are based on some regular
subdivision /refinement scheme

» When we talk about the mesh type of a scheme, we mean this
parent scheme

» In a plane we can cover points in a regular grid with regular
triangles, squares, or regular hexagons.

» Accordingly, we call a scheme triangle-, quadrilateral- or
hexagon-based (in practice, the latter is rare)



Mesh-type

» Be careful: you cannot cover everything "aesthetically”
(joining along whole edges) with 6-regular triangle or 4-regular
quadrilateral mesh without degenerate cases!

P> The above regular topologies can be used to describe the
infinite plane, the infinite cylindrical surface, or surfaces with
topology like the torus's

» For example, surfaces with topology like the sphere’s cannot
be covered



Mesh-type — Mobius




Mesh-type — Klein bottle




Concepts — face-split (primal)

» Each face corresponding to its mesh type is divided into four

> \We keep the vertices of the mesh from the previous step (but
we can change their position — if we don't change them, we
are talking about an interpolation scheme)

» \We insert new vertices on each edge (thus splitting them in
two)

» In the case of quadrilateral-based schemes, we also derive a
new vertex from the face



Face-split on 4-regular mesh

Face split for quads




Face-split on 6-regular mesh

AVAVA VAVAVAVAVaY

—_—

/\ \ ANV AN A AN

Face split for triangles




Concepts — face-split

Even vertices:

P In face-split schemes, the vertices of the coarser resolution
mesh that correspond to the vertices of the finer mesh

» White on the previous figure
Odd vertices:

» Newly created vertices that do not correspond to any vertices
from the previous refinement level

» Black on the previous figure



Concepts — vertex-split (dual)

» In this case, a new vertex is created from each vertex for each
of the faces neighboring the original vertex

» A new face is directly derived from the old face

» Along the edges we get new faces (connecting new vertices,
which are created from the endpoints of an edge, across the
two faces that are divided by that edge)

» Instead of the old vertices, we get a new face with new
vertices.



Vertex-split on 4-regular mesh

R i -
./l\..

Vertex split for quads




Concepts — face- and vertex-split

» On a regular quadrilateral mesh, in both cases the new mesh
will be 4-regular — maintains the topology!

» Pay attention: with regular triangle meshes, after vertex-split,
we also get triangles, quadrilaterals and hexagons!



Doo-Sabin

Original article:
https://web.archive.org/web/20110707175713/http:
//trac2.assembla.com/DooSabinSurfaces/export/12/
trunk/docs/Doo0%201978%20Subdivision},20algorithm.pdf

Short description: http://www.cs.unc.edu/~dm/UNC/COMP258/
LECTURES/Doo-Sabin.pdf
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https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf
https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf
https://web.archive.org/web/20110707175713/http://trac2.assembla.com/DooSabinSurfaces/export/12/trunk/docs/Doo%201978%20Subdivision%20algorithm.pdf
http://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Doo-Sabin.pdf
http://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Doo-Sabin.pdf

Doo-Sabin — calculating new points




Doo-Sabin — calculating new points

» Vertex split algorithm: for every face and for each of its
vertices we calculate a new vertex

» Let the given vertex be V € E3, its two neighbours on the face
Vi and V, € B3, and the centroid of the face F € E3

» Then the two edge vertices are E; = %V+ %Vl and
E=3v+3iv,
> The new vertex is V/ = sV + 16 + 16 + +F



Doo-Sabin



Doo-Sabin — faces from faces

Number of sides equals the original



Doo-Sabin — faces from edges

Always a quadrilateral



Doo-Sabin — faces from vertices

Number of sides equals the valency of the vertex



Doo-Sabin

Be careful, the resulting polygons may not be planar!



Catmull-Clark
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Catmull-Clark

» Face split algorithm, defined for quadrilateral meshes

» The new vertex positions are the result of the weighted
average of the vertices of the neighboring faces. The weights
are shown in the previous figure.

» A new face vertex is the centroid of the face

> A new edge vertex takes into account the two endpoints of
the original edge with a weight of 3, and the other vertices on
the same face with a weight of %6

P For even vertices the neighboring vertices have a larger weight
than the further ones. The value k indicated in the figure is
the number of faces adjacent to the vertex.

» We can also handle the edge of the mesh (boundary), and in
the same way, if you want to leave a sharp edge in the model
(crease)



Catmull-Clark




Catmull-Clark — boundary




Catmull-Clark — crease

Catmull-Clark with Sharp Creases
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