
Computer Graphics

Ágoston Sipos
siposagoston@inf.elte.hu

Eötvös Loránd University
Faculty of Informatics

2025-2026. Fall semester

Table of contents
Overview

Shading
Light source models
Material models
Implementation

Texturing
Texture mapping
Parameterization
Texture filtering
Procedural textures
Non-color textures

Incremental image synthesis on the GPU
Incremental image synthesis
Pipeline on hardware

Graphics Pipeline

Fragment-processing

▶ In this step, the color of the fragments will be determined
▶ Now we will see how we can do this by modeling light-matter

interactions
▶ We will also examine what texturing can be used for

Local illumination

▶ We determine the color of the fragment according to some
simplified lighting model

▶ For this we need
▶ abstract light source models
▶ abstract material models

▶ By combining these, we will approximate the desired lighting

Light source models

Directional light source

Light source models

Point light source

Light source models

Spot light source

Abstract light sources

▶ Directional light source
▶ it only has direction
▶ represented with one vector (in world CS)
▶ the light rays are considered parallel
▶ used for simulating a distant light source

▶ Point light source
▶ it only has a position
▶ represented with one point, in world CS
▶ e.g.: lightbulb

▶ Spot light source
▶ cone: apex position, axis direction, and a ”light circle”
▶ represented with a point, a vector (world CS!) and two angles
▶ e.g.: table lamp

Helmholtz law

▶ Helmholtz reciprocity: a ray of light can be reversed
▶ This is good for us for two reasons:

▶ It guarantees that ultimately the radiance will decrease.
▶ We can look ”backwards” at the rays.

Lighting models – notations

▶ These are used to model light-matter interactions
▶ v := ω viewing direction
▶ l := ω′ towards the light source, vector pointing the towards

the point ”giving” the light
▶ n surface normal
▶ r: direction of the ideal reflection from l incident direction,

with n normal
▶ v, l,n unit vectors
▶ θ′ is the angle between l and n
▶ ϕ is the angle between r and v

Lighting models – notations

BRDF

▶ Let Lin be the intensity of the light coming from a given
direction to a point on the surface, and let L be the intensity
of the light reflected from there (actually: its radiance, i.e.
the power emitted from a unit surface to a unit solid angle)

▶ Let l denote the unit vector towards the light source, v the
unit vector towards the viewpoint, and n the surface normal
at the given point. Let θ′ be the angle between n and l

▶ Then the bidirectional reflectance distribution function, BRDF
is

fr(x, v, l) =
L

Lin cos θ′

Ideal refrection

▶ An ideal mirror reflects only in the specular direction r. (see
lecture 4)

▶
fr(x, v, l) = kr

δ(r − v)
cos θ′

▶ δ is the Dirac-delta function, which is a generalized function
whose value is zero everywhere except at zero, but its integral
over the real numbers is 1.

▶ The kr reflection coefficient is the Fresnel coefficient. This
depends on the refractive index of the material and its
electrical conductivity.

▶ The Fresnel coefficient describes the ratio of reflected and
incident energy. This physical quantity can be calculated.

Ideal refraction

▶ Let t be the direction of ideal refraction. (see lecture 4)
▶ We get it similarly to the ideal reflection:
▶

fr(x, v, l) = kt
δ(t − v)
cos θ′

▶ kt is the refraction, Fresnel coefficient.

Lambert’s cosine law

▶ Good for describing optically
rough, diffuse surfaces.

▶ Assumption: the amount of
reflected light does not depend on
the viewing direction.

▶ Due to Helmholtz’s law, it cannot
depend on the incoming direction
either, i.e. it is constant:

fr(x, v, l) = kd

▶ Only looking at this:
Lref = Likd cos+ θ′

Specular reflection – Phong model

▶ It can used to create a ”glitter”, that is intensive in the
specular direction but quickly fades when moving away from
the specular direction

▶ Let ϕ be the angle between r specular direction and v view
direction.

▶ Then cosϕ = r · v
▶ We are looking for a function that is large for ϕ = 0 but

quickly dies off.
▶

fr(x, v, l) = ks
cosn ϕ

cos θ′

Not symmetric!
▶ Only looking at this: Lref = Liks(cos+ ϕ)n

Specular reflection – Phong model

n = 5 n = 25 n = 50

Specular reflection – Phong-Blinn model

▶ Let h be the bisecting vector of the vectors pointing towards
the light source and the viewing direction.

▶
h =

v + l
‖v + l‖

▶ Let δ be the angle between h and n normal.
▶ Then cos δ = h · n
▶

fr(x, v, l) = ks
cosn δ

cos θ′

▶ Only looking at this: Lref = Liks(cos+ δ)n

Implementation of lighting models

▶ The previous formulas describe the behavior of a single
wavelength of light.

▶ We should describe the entire spectrum, but we simplify: we
only use the RGB wavelengths.

▶ Most surfaces cannot be described by a single model, we use
several models to describe the interaction between material
and light.

▶ The amount of light from different models is summed.
▶ Since we only calculate the local illumination, we lose light

from multiple reflections. We replace this separately (ambient
light).

Ambient component

▶ The amount of light present everywhere in the scene.
▶ Formula: ka · La, where ”·” is now the multiplication per

coordinate: [a, b, c] · [x, y, z] = [ax, by, cz]
▶ ka depends on the surface, let

vec3 ambientColor
▶ Here, ka determines what fraction of the incident light

intensity is reflected by the material at the wavelengths
corresponding to R, G, B. ka is a surface property.

▶ La is the intensity of constant background illumination at
RGB wavelengths, independent of light source and surface. La
is a property of the scene.

▶ In fragment shader (in DirectX pixel shader) can be used:
ambientColor * ambientLight

Lambert-law

▶ BRDF: Lref = Likd cos+ θ′

▶ We called this diffuse color.
▶ kd and Li as before, but Li is the current light source property:

vec3 diffuseColor
vec3 diffuseLight

▶ We also need: cos+ θ′. (cos+: where cos is negative, it is 0.)
▶ Calculation: clamp(dot(normal, toLight), 0, 1)
▶ For this you need, normal = n and toLight = l.
▶ In the case of a Spot light source, the light circle will also

have to be taken into account.

▶ clamp(x, a, b) =


a , if x < a
x , if x ∈ [a, b]
b , if x > b

Specular reflection – Phong model

▶ BRDF: Lref = Liks(cos+ ϕ)n, where ϕ is the angle between r
specular direction and v viewing direction.

▶ kd and Li (this is a different Li) again as before, Li is also a
the current light’s light source property:
vec3 specularColor
vec3 specularLight

▶ n is a surface-dependent constant, let it be
float specularPower

Specular reflection – Phong model

BRDF: Lref = Liks(cos+ ϕ)n; r specular direction and v viewing
direction.
▶ We need cos+ ϕ, for which we need r and v.
▶ r is the mirror image of l vector on n. Calculation:

vec3 refl = reflect(-toLight, normal)
▶ v is the viewing direction, i.e. the unit vector pointing from

the surface point to the camera.
vec3 toEye = normalize(eyePosition - worldPos)

▶ Calculating (cos+ ϕ)n:
pow(clamp(dot(refl, toEye),0,1), specularPower)

Calculating toLight

▶ Directional light source
▶ Direction of the light, normalized direction vector: vec3

lightDirection
▶ toLight = -lightDirection

▶ Point light source
▶ Light’s position, position vector: vec3 lightPosition
▶ toLight = normalize(lightPosition - worldPos)

▶ Spot light source
▶ Direction of the light, normalized direction vector:

vec3 lightDirection
▶ Light’s position, position vector: vec3 lightPosition
▶ toLight = normalize(lightPosition - worldPos)

like a point light source

Effect of spot light source

▶ Two extra parameters:
▶ inner light circle: within which it acts with full intensity
▶ outer light circle: outside of which it has absolutely no effect

▶ Between the two, the light intensity decreases
▶ The light circles are considered to be (infinite) cones starting

from the light source and having the same orientatoin as the
direction of the light.

▶ A surface point is inside a cone if the line connecting the
point to the position of the light source is inside the cone.

Spot light source

Spot light source

Spot light source

Effect of spot light source

▶ If the angle between lightDirection and -toLight is less
than half of the opening angle of the cone, then the segment
is inside the cone, i.e. the surface point is inside too

▶ Instead of the angles, it is sufficient to examine their cos if the
max angle is ≤ 180◦

▶ Let’s represent the light circles, with cos of the half angle to
the corresponding cone:
▶ inner light-circle: cosInnerCone
▶ outer light-circle: cosOuterCone

Effect of spot light source

▶ smoothstep(min, max, x):
▶ 0, if x<min
▶ 1, if x>max
▶ a transition between 0 and 1 (linear interpolation or cubic

Hermite)
▶ float spotFactor = smoothstep(cosOuterCone,

cosInnerCone, dot(lightDirection, -toLight))
▶ The diffuse and specular terms must be multiplied with this

In summary

Surface properties
▶ ambientColor
▶ diffuseColor
▶ specularColor
▶ specularPower
▶ normal
▶ worldPos

Light source properties
▶ diffuseLight
▶ specularLight
▶ toLight

Scene properties
▶ ambientLight
▶ eyePosition

What is texturing?

▶ So far: single color material models, i.e. the entire surface is
the same color.

▶ Not common in the real world.
▶ We want to give fine details.
▶ We need different parameters in BRDF.
▶ We specify these parameters – mainly color – in the textures.

Texturing

Texture description methods

▶ ”Array”:
▶ we read from some 1/2/3 dimensional array, and its elements

are texels
▶ Visually in 2D: we ”cover/wrap” our geometry with the

”image” stored in the array
▶ We identify the texels with coordinates in texture space, the

coordinates are interpreted on the [0, 1] interval
▶ We give it as a function:

▶ using some f(x, y, z) → color or f(x, y) → color function
▶ this is called procedural texturing

Mapping methods

▶ We have two spaces: image space (screen’s pixels) and
texture space (texture’s texels)

▶ From where to where do we map?
▶ Texture space → image space: texture based mapping

» For each texel, we search for its corresponding pixel.
⊕ Efficient.
	 It is not guaranteed that we ”hit” every pixel, if we hit a pixel

we might hit it multiple times.
▶ Image space → texture space: image space based mapping

» For each pixel, we search for its corresponding texel.
⊕ It fits well with incremental image synthesis.
	 It requires the inverse of the parameterization and projection

transformations.

Parameterization

▶ How can we decide for each surface point, which elements of
the array are needed or with which parameters to evaluate the
procedural texture function?

▶ texture coordinates are assigned to each point of the surface.
▶ The assignment of texture coordinates to the surface is now

called parameterization.
▶ In the following, we will talk about 2D textures.

Parameterizing parametric surfaces

▶ Parametric surface:

F ∈ R2 → R3, F(u, v) := (x, y, z)

▶ naturally the u, v parameters can be used as texture
coordinates.

▶ If DF 6= Dtex, then we need to transform u, v.
▶ E.g.:

▶ Cylindrical surface
▶ DF = [0, 2π]× [0, h], F(u, v) := (cos u, v, sin u)
▶ Texture space: (ū, v̄) ∈ [0, 1]× [0, 1]
▶ Transformation: ū := u/2π, v̄ := v/h

Parameterizing triangles

▶ Let triangle vertices: pi = (xi, yi, zi) ∈ R3, i ∈ {1, 2, 3}, as well
as their corresponding vertices in texture space:
ti = (ui, vi) ∈ R2, i ∈ {1, 2, 3}.

▶ We are looking for a mapping R3 → R2 such that pi 7→ ti and
it maps a triangle to triangle.

▶ The simplest such mapping is the linear mapping, which can
be given by a 3 × 3 matrix.x

y
z

 =

Ax Ay Az
Bx By Bz
Cx Cy Cz

 ·

u
v
1

 = P ·

u
v
1



Parameterizing triangles

x
y
z

 =

Ax Ay Az
Bx By Bz
Cx Cy Cz

 ·

u
v
1

 = P ·

u
v
1


▶ Nine unknowns, nine equations
▶ Texture based mappig!
▶ For screen based mapping we need the inverse transformation:u

v
1

 =

ax ay az
bx by bz
cx cy cz

 ·

x
y
z

 = P−1 ·

x
y
z



Texturing and ray tracing

▶ Surface-ray intersection: in world coordinate system
▶ Inverse transformations:

▶ World CS → Model CS
▶ Model CS → texture space

Model CS → texture space

▶ Parametric surface
We get u, v during intersection calculations, it does not need
to be calculated separately.

▶ Triangles
The previously derived P−1 required.
Speed up option: if neither the triangle itself nor the texture
coordinates change in the vertices, then P−1 is constant.

Parameterizing triangles

▶ In practice, this can be calculated quickly with an incremental
algorithm.

▶ If the texture coordinates are given in the three vertices, they
can be calculated for each pixel with the algorithm used for
filling the triangles.

▶ Let α, β, γ be the barycentric coordinates of the points on the
surface where p = αp1 + βp2 + γp3

▶ Then we get the texture coordinate for p with
t = αt1 + βt2 + γt3

Perspective-correct texture mapping

▶ The linear interpolation of texture coordinates will give the
wrong image, if we are not using only affine transformations
on the triangles.

▶ I.e: 99% of the time.

Perspective-correct texturing

Perspective-correct texturing

▶ So linear interpolation of u, v won’t be good for non-affine
transformations – because they are not linear in screen space

▶ After we transform, but before homogeneous divide, our
coordinates should be [xt, yt, zt,wt]

▶ After homogeneous divide: [xs, ys, zs, 1] = [xt
wt
, yt

wt
, zt

wt
, 1]

▶ If we interpolate the texture coordinates based on
[xs, ys, zs, 1], then it won’t be correct.

▶ In contrast to that: if we interpolate 1
w , it will remain correct!

Moreover, any q
w value is well interpolated!

▶ Instead of α, β, γ we use the coordinates αw, βw, γw in world
CS, and

▶ interpolating αw
w , βw

w , γw
w , we get the correct texturing.

Perspective-correct texturing - proof 1/3
▶ Now we denote the screen coordinates as X,Y and the spatial

coordinates as x, y, z, where the relation between the two:

X =
x
z , Y =

y
z

from which obviously x = Xz , y = Yz.
▶ Let us assume that the point above is a vertex of a triangle

(or polygon in a general case) and let the implicit equation of
this primitive’s plane be

Ax + By + Cz = D

▶ Let u, v denote the texture coordinates of the spatial primitive
points, which we assume can be expressed as a linear function
of the x, y, z coordinates:

u = ax + by + cz + d , v = ex + fy + gz + h

Perspective-correct texturing - proof 2/3
Let’s show that 1/z is a linear function of X,Y:
▶ Let’s start from the implicit equation of our primitive’s plane:

Ax + By + Cz = D

when we substitute x and y with the screen coordinates (X,Y)
we get the following expression:

AXz + BYz + Cz = D

▶ Divide this by zD (i.e. express 1/z):

1
z =

A
DX +

B
DY +

C
D

▶ Since A,B,C,D are constants (i.e. independent of X,Y), the
above expression is indeed the 1/z as a linear function of X,Y

Perspective-correct texturing - proof 3/3

Let’s show that u/z, v/z is a linear function of X,Y:
▶ We assumed that texture coordinates are linear in spatial

coordinates, i.e

u = ax + by + cz + d
v = ex + fy + gz + h

by substituting the spatial coordinates with the screen
coordinates, we get this expression

u = aXz + bYz + cz + d
v = eXz + fYz + gz + h

Perspective-correct texturing - proof 3/3

Let’s show that u/z, v/z is a linear function of X,Y:
▶ Divide by z and substitute the 1/z on the right side with the

previously obtained expression:

u
z = aX + bY + c + d

(
A
DX +

B
DY +

C
D

)
v
z = eX + fY + g + h

(
A
DX +

B
DY +

C
D

)
and they are indeed linear, because by rearranging the above

u
z =

(
a + dA

D

)
X +

(
b + dB

D

)
Y +

(
c + d C

D

)
v
z =

(
e + hA

D

)
X +

(
f + hB

D

)
Y +

(
g + h C

D

)

Texture filtering

▶ It is rare to have exactly one texel per pixel.
▶ Magnification: the pixel size is smaller than the texel size –

multiple pixel per texel. OpenGL: GL_TEXTURE_MAG_FILTER
▶ Minification: the pixel size is larger than the texel size –

multiple texel per pixel. OpenGL: GL_TEXTURE_MIN_FILTER
▶ Another problem: if something is linear in texture space, then

it’s not linear in screen space because of the perspective

Magnification

The pixel size is smaller than the texel size – multiple pixel per
texel
▶ Without filtering: we use the value of the texel closest to the

pixel’s center
▶ Bilinear filtering: we take the weighted average of the nearest

four texels.

Bilinear filtering

Minifiacation

The pixel size is larger than the texel size – multiple texel per pixel
▶ The accurate sampling would be: transform the square of the

pixel into texture space and take the average of the selected
texels.

▶ Instead: we also take a square in the texture space.
▶ In practice: averaging of an arbitrary square of the texture is

too resource demanding, instead we should either use fewer
texels or MIP maps

▶ Fewer pixel:
▶ Without filtering: we use the value of the texel closest to the

pixel’s center
▶ Bilinear filtering: we take the weighted average of the nearest

four texels.

MIP-maps

▶ MIP: multum in parvo – much in a small space
▶ We generate a ”pyramid” from the texture, halving its size at

each level

MIP-maps
▶ During filtering, we select the appropriate level based on the

ratio of pixel/texel area and read from there.
▶ Even within the given MIP-map, reading can be unfiltered or

bilinearly filtered.
▶ Trilinear filtering: we use use two adjacent levels, we use

bilinear filtering within the levels, then we take the weighted
average of the results

Procedural textures

▶ The textures can be specified with a function instead of an
”array”.

▶ Texture coordinates: the function parameters.

generated with Filter Forge

Properties

▶ Advantages:
▶ A lot less storage space is required
▶ Any resolution – the only limit is numerical accuracy
⇒ In case of magnification we don’t need to filter.

(Unfortunately, it does not solve the minification problem)
▶ Drawbacks:

▶ High computational demand.
▶ It can be harder to modify it.

Non-color textures

▶ Textures can be used to describe any property of a surface
point.

▶ These properties can be for example:
▶ surface normal – bump and normal mapping
▶ displacement – Displacement mapping
▶ light source visibility – Shadowmaps
▶ mirror like reflection – Reflection mapping/Environment

mapping

Bump or normal mapping

▶ With the texture we specify normal vectors.
▶ Instead of the original normals of the surface, we use them

when calculating the lighting.
▶ It gives the appearance of a bumpy/rough surface until you

look at it, at a very flat angle.

+ =
generated with Filter Forge

Displacement mapping

▶ The surface point is actually moved
▶ We can only move the vertices of triangles ⇒ depends on the

resolution of the geometry.
▶ Even at a flat angle, we get a good result.

Shadowmaps

▶ From the light source’s point of view, we create a texture in
which the distances from the light source are stored.

▶ During the actual drawing, based on the shadowmap, we
decide for each point whether it is directly affected by the
light or not.

+ =

Reflection mapping

▶ Can be used for flat mirrors.
▶ We create a separate image, saved in a texture, of what is

visible in the reflected direction.
▶ This will be applied to the surface as a texture during the final

drawing.
▶ It only gives a single bounce/reflection.
▶ It must be done separately for each mirror.

Environment mapping

▶ We consider the environment of our scene to be infinitely
distant, in the query only the direction matters, not the
position.

▶ We store it in a special texture. (Typically Cubemap.)
▶ When drawing, for reflective surfaces, we read from this

according to the direction of the reflection.

In summary

▶ All surface-optical properties can be specified with a constant
or even with a texture.

▶ (Even more if we are clever!)
▶ All vectors and points are given in the world coordinate

system.
▶ eyePosition must be updated when the view changes!
▶ Problem: our model is in model CS, and the Vertex Shader

will transfer it to normalized device CS!
▶ Solution: let’s also calculate the world coordinates with the

Vertex Shader, and pass the interpolated value to the
Fragment Shader!

Incremental image synthesis

Incremental image synthesis

Pipeline

▶ We divide the work into subtasks
▶ Each subtask is processed by a different processing unit

(processor) (ideally)
▶ The input of each unit is the output of the unit preceding it in

the pipeline

Pipeline

▶ In order for a unit to start working, it does not have to wait
for work on the entire workpiece to be completed, only the
parts in front of it need to be ready

▶ → if we introduce n pipeline stage, then at a given moment
we can work on up to n elements at the same time (after the
initial start-up)

▶ Not just GPU! Even the Pentium IV had 20 pipeline stages (a
GeForce 3 has 6-800)

Parallelizations in practice – per vertex

▶ When we call glDrawArrays, glDrawElements etc., then the
pipeline starts on the vertices of the primitive

▶ We transform each vertex independently, in parallel

Parallelizations in practice – per primitive

▶ All primitives to be drawn are clipped independently, in
parallel

Parallelizations in practice – per primitive

▶ All primitives to be drawn are rasterized independently, in
parallel

Parallelizations in practice – per fragment

▶ All fragments to be drawn are colored independently, in
parallel

Parallelizations in practice – per pixel

▶ For each pixel corresponding to a fragment, we define the
color of the pixel displayed on the screen (+visibility with
z-buffer)

Pipeline on hardware

GPU programming

▶ No explicit parallelization
▶ Because we get that from working on different elements

independently, in parallel (even in time)

Compiling shaders

Executing shaders

A typical CPU

Processing unit of a GPU

Remove the components that help with fast execution of only one
thread

GPU – 2 processing unit, 2 shader

GPU – 4 processing unit, 4 shader

GPU processing units

▶ In the previous figures, each processing unit ran a different
shader

▶ But this is not necessary!
▶ A triangle can be made into many fragments → the same

shader must be run for each!
▶ ⇒ we reduce costs by assigning a common instruction fetcher

to several ALUs (i.e they execute the same program) →
Single Instruction Multiple Data

GPU processing unit

GPU processing unit

GPU processing unit

Branching

Branching

Branching

Branching

▶ The ALU1-ALU8 denotes the ALUs with shared instruction
fetcher

▶ T appeared for those ALUs whose data set the branching
condition to true

▶ And F for those with false
▶ The instructions of both branches (!) must be evaluated
▶ In the worst case, the performance in the figure above drops

to one eighth!
▶ Today’s GPUs have 16-64 ALUs on a shared instruction

stream

Stalls

▶ On one ALU with multi-threading we process multiple
fragment/vertex/etc. → storing multiple execution contexts
(code, temporal data, etc.)

▶ Because some operations are much slower than others
▶ For example: a texture query in a shader is 100x or even

1000x slower than an arithmetic (vector) operation!

Paging

Paging

Paging

GPU processing unit

The following observations played an important role in the
construction of GPU stream processors:

1. Remove the components that help with fast execution of only
one thread

2. ⇒ we reduce costs by assigning a shared instruction fetcher to
several ALUs (i.e they execute the same program) → Single
Instruction Multiple Data

3. On one ALU with multi-threading we process multiple
fragment/vertex/etc. → storing multiple execution contexts
(code, temporal data, etc.)

	Overview
	Shading
	Light source models
	Material models
	Implementation

	Texturing
	Texture mapping
	Parameterization
	Texture filtering
	Procedural textures
	Non-color textures
	Fragment processing summary

	Incremental image synthesis on the GPU
	Incremental image synthesis
	Pipeline on hardware

