
Computer Graphics

Ágoston Sipos
siposagoston@inf.elte.hu

Eötvös Loránd University
Faculty of Informatics

2025-2026. Fall semester

Table of contents

Reminder

Clipping
Clipping in 2D
Clipping in 3D

Rasterization
Segment rasterization
Triangle rasterization
Polygon rasterization

Graphics pipeline

Incremental image synthesis

▶ Incremental principle
▶ We looked at the graphics pipeline in terms of transformations

and we also looked at a solution in screen space to the
visibility problem

▶ Now we look at the topic of clipping and rasterization

Clipping
▶ We saw that we need the clip for two reasons:

▶ Filtering out degenerate cases (see e.g. last lecture’s central
projection)

▶ We don’t want to calculate unnecessarily (we should not waste
resources on what we cannot see)

▶ During clipping, we filter out geometric elements outside the
viewing frustum

Clipping in 2D

▶ We examine the clipping of simple geometric elements (points
and segments), now in the plane

▶ We need a region, on which we clip – from the simple
(axis-aligned rectangle) to the general case (convex polygon)

▶ First we clip points, then we try to clip segments using the
results from the point clipping

Clipping points with an axis-aligned rectangle
▶ We need to decide for a point x = [x, y]T whether it is inside

or outside the clipping region
▶ In the simplest case, our clipping region is an axis aligned

rectangle
▶ We can easily represent it, with the two endpoints of its

diagonal: wmin = [xmin, ymin]T, wmax = [xmax, ymax]T

Clipping points with an axis-aligned rectangle

▶ Then x is inside the axis aligned rectangle if

x ∈ [xmin, xmax] ∧ y ∈ [ymin, ymax]

Clipping points with convex quadrilateral
▶ Let our clipping region be a convex quadrilateral
▶ We can represent it as an intersection a four half-planes: with

half-planes defined by the bounding lines and their normals
pointing inward

▶ We can then represent our clipping region as a point-normal
pairs (pi,ni), i = 0, .., 3, where all normals should be pointing
inward

Clipping points with convex quadrilateral

▶ Then x = [x, y]T is inside of the clipping region, if

⟨x− pi,ni⟩ ≥ 0 , i = 0, 1, 2, 3

▶ In this case every half-plane represented by (pi;ni) contains x
(either it is on the bounding line or in the direction of the
normal)

▶ That is, we need to check only the sign of the signed
orthogonal projections of the vectors x− pi on ni normals

Signed orthogonal projection

Signed orthogonal projection – point inside the half-plane

Signed orthogonal projection – point outside the half-plane

Clipping segment with half-plane

▶ Clip the two endpoints of the segment
▶ If both are inside, then we keep the segment
▶ If both are outside, then we discard the segment
▶ If one is inside and the other is outside, then we keep the one

inside, we replace the one outside with the intersection point
of the segment and the half-plane

Clipping segment with half-plane

Clipping segment with half-plane – new endpoint!

Clipping segment with half-plane – new endpoint!

Clipping segment with half-plane

Clipping segment with convex quadrilateral

For every bounding half-plane:
▶ Clip the endpoints of the segment with the half-plane

▶ If both are inside, then we do not modify the endpoint and
continue

▶ If both are outside, then we discard the segment and return
▶ If one is inside the other is outside, then we keep the point

inside, we replace the other with the intersection point of the
segment and the half-plane and continue

Clipping segment with an axis-aligned rectangle

▶ In the third case (when an intersection has to be calculated),
in the axis aligned case our task is simple

▶ For example, consider clipping with the left boundary ⇒ then
we need to find t for which the x-coordinate of x(t) is xmin

▶ That is from xmin = x1 + t(x2 − x1) we get t = xmin−x1
x2−x1

▶ Then the coordinates of the new end point
x(xmin−x1

x2−x1
) =

[
xmin

y1 +
xmin−x1
x2−x1

(y2 − y1)

]

Clipping segment with convex quadrilateral
▶ As previously seen, the endpoints must be clipped on the

current half-plane
▶ If a new end point needs to be calculated, we simply need to

substitute the (current) parametric equation of the segment
into the implicit equation of the line defining the two
half-planes.

▶ That is, for the current i ∈ {0, 1, 2, 3} solve the equation

⟨x(t)− pi,ni⟩ = 0

where, with t ∈ [0, 1]

x(t) = x1 + t(x2 − x1)

▶ Then the intersection parameter is t = ⟨pi−x1,ni⟩
⟨x2−x1,ni⟩

Clipping segment with convex polygon

▶ Same as with convex quadrilateral
▶ The only difference is that there are not four, but more (or

only three) bounding lines
▶ Direction of normals should be consistent

Clipping segments

▶ According to the above, a segments must be clipped with
every half-plane

▶ But there are many possibilities (four half-planes for
quadrilaterals, two endpoints – any endpoint can fall
anywhere)

▶ With the Cohen-Sutherland algorithm, we can decide which
sides should we clip with

Cohen–Sutherland algorithm

▶ Used for clipping with axis-aligned rectangles (but also works
on convex quadrilaterals)

▶ Assign a 4-bit (so-called TBRL) code to each of the
endpoints:
▶ T = 1 if the point is above the window, otherwise 0
▶ B = 1 if the point is below the window, otherwise 0
▶ R = 1 if the point is to the right of the window, otherwise 0
▶ L = 1 if the point is to the left of the window, otherwise 0

Cohen–Sutherland algorithm

code = Top, Bottom, Right, Left

Cohen-Sutherland algorithm

▶ In the axis aligned case it’s easy to calculate the TBRL code:
code = (y > ymax, y < ymin, x > xmax, x < xmin)

▶ Let the TBRL of the two endpoints codea és codeb
▶ If codea OR codeb == 0 then both endpoints are inside the

window ⇒ we keep the segment
▶ If codea AND codeb != 0 then both endpoint are outside the

window along a common side ⇒ we discard the segment
▶ Otherwise: we have to cut the segment (in TBRL code, the

1s tell us which side it can be on). We recalculate the code of
the new endpoint and compare them again as above.

Cohen-Sutherland algorithm

codea OR codeb == 0:

Cohen-Sutherland algorithm

codea AND codeb != 0:

Cohen-Sutherland algorithm

Otherwise:

Clipping polygon with convex polygon

▶ A polygon can be stored with an array of its vertices if the
traversal order is fixed

▶ Let our clipping region be a convex polygon
▶ Let’s see how we can clip a polygon with convex polygon

Sutherland-Hodgman polygon clipping

Sutherland-Hodgman polygon clipping
▶ Clipping with one side: Let p[] be the array of vertices of the

polygon that we clip, and q[] will be the array of the output
polygon (i.e. the clipped polygon)

▶ Let n be the number of vertices, and we assume that
p[0] = p[n]

▶ Let’s go along the edges of the polygon to be cut:
▶ If p[i] and p[i + 1] are inside then
⇒ add p[i] point to the q[] output polygon

▶ If p[i] is inside and p[i + 1] is outside then
⇒ add p[i] to q[] output polygon and add the intersection of
the segment defined by p[i],p[i + 1] and the line of the current
side to q[]

▶ If p[i] is outside and p[i + 1] is inside then
⇒ add the intersection of the side’s line and the segment
defined by p[i], p[i + 1] to q[]

▶ If p[i] and p[i + 1] are outside then ⇒ SKIP
▶ This is repeated for all sides of the clipping polygon (the

result of the clipping with the previous side is the input for the
next clipping)

Sutherland-Hodgman polygon clipping

PolygonClip(in p[n], out q[m], in line) {
m = 0;
for(i=0; i < n; i++) {

if (IsInside(p[i])) {
q[m++] = p[i];
if (!IsInside(p[i+1]))

q[m++] = Intersect(p[i], p[i+1], line);
} else {

if (IsInside(p[i+1]))
q[m++] = Intersect(p[i], p[i+1], line);

}
}

}

Sutherland-Hodgeman polygon clipping

The clipping is done on all edges of the clipping polygon

Sutherland-Hodgeman problem: clip a concave polygon

Clipping in 2D

Clipping in 3D

Clipping in 3D
▶ It works the same way as before, but the implicit equations of
⟨x− p,n⟩ ≥ 0 now define a half-spaces

▶ In space, it is even more worthwhile to clip with axis aligned
boxes

▶ Cohen-Sutherland bitcodes are now 6 in length: in front,
behind, top, bottom, right, left

Segment drawing

▶ One of the most used primitive
▶ It is crucial that we can draw them well
▶ Even better, if it’s fast

Jason Thielke, jasonthielke.com

How do we draw segments?

▶ The two endpoints are given.
▶ How can we connect them?
▶ We only have miniature rectangles (we call them pixels).

Representing segments (again)

▶ Endpoints: (x1, y1), (x2, y2)

▶ Assume it is not vertical: x1 ̸= x2.
▶ Segment equation:

y = mx + b, x ∈ [x1, x2]

m =
y2 − y1
x2 − x1

b = y1 −mx1

Naive algorithm

de f l i n e 1 (x1 , y1 , x2 , y2 , draw) :
m = f l o a t (y2−y1)/ (x2−x1)
x = x1
y = f l o a t (y1)
w h i l e x<=x2 :

draw . p o i n t ((x , y))
x += 1
y += m

Naive algorithm

▶ due to rounding, the calculation
are ”off” by half a pixel

▶ draw.point((x,y)) → wants
int values, conversion is slow

▶ m = float(y2-y1)/(x2-x1) not
accurate

▶ y += m → the error accumulates
in y

▶ only works correctly with |m| < 1

Improving the algorithm 1.

de f l i n e 2 (x1 , y1 , x2 , y2 , draw) :
m = f l o a t (y2−y1)/ (x2−x1)
x = x1
y = y1
e = 0 .0
w h i l e x<=x2 :

draw . p o i n t ((x , y))
x += 1
e += m
i f e >= 0 . 5 :

y += 1
e −= 1.0

Improving the algorithm 1.

▶ Good: Always „hits” the endpoints
▶ Good: It moves more evenly in the

y direction.
▶ Bad: We still use float values

Naive:

Improved:

Improving the algorithm 2.

de f l i n e 3 (x1 , y1 , x2 , y2 , draw) :
x = x1
y = y1
e = −0.5←−
w h i l e x<=x2 :

draw . p o i n t ((x , y))
x += 1
e += f l o a t (y2−y1)/ (x2−x1)←−
i f e >= 0 . 0 :←−

y += 1
e −= 1.0

Improving the algorithm 3.

de f l i n e 4 (x1 , y1 , x2 , y2 , draw) :
x = x1
y = y1
e = −0.5∗(x2−x1)←−
w h i l e x<=x2 :

draw . p o i n t ((x , y))
x += 1
e += y2−y1←−
i f e >= 0 . 0 :

y += 1
e −= (x2−x1)←−

Improving the algorithm 4.

de f l i n e 5 (x1 , y1 , x2 , y2 , draw) :
x = x1
y = y1
e = −(x2−x1)←−
w h i l e x<=x2 :

draw . p o i n t ((x , y))
x += 1
e += 2∗(y2−y1)←−
i f e >= 0 :

y += 1
e −= 2∗(x2−x1)←−

Improving the algorithm 4.

▶ This is the Bresenham algorithm (one of its special case)
▶ We accumulate the error separately in e
▶ We are not using float values
▶ It can be generalized for segments with arbitrary slopes.

Bresenham algorithm

▶ The plane should be divided into eighths, each is a separate
case.

▶ (The examples were: right and down)
▶ We have to decide, whether |x2 − x1| or |y2 − y1| is larger

(where the segment is steeper).
▶ If |y2 − y1| is larger, swap xi ↔ yi, we also use the swapped

values during draw!
▶ If x1 > x2, then swap: x1 ↔ x2, y1 ↔ y2.
▶ We increase the e error with |y2 − y1| in every step
▶ We step along y based on the sign of y2 − y1

Bresenham algorithm

Complete Bresenham algorithm 1.

de f Bresenham (x1 , y1 , x2 , y2 , draw) :
s t e e p = abs (y2−y1)>abs (x2−x1)
i f s t e e p :

x1 , y1 = y1 , x1
x2 , y2 = y2 , x2

i f x1>x2 :
x1 , x2 = x2 , x1
y1 , y2 = y2 , y1

Dy = abs (y2−y1)
i f y1<y2 :

Sy = 1
e l s e :

Sy = −1

Complete Bresenham algorithm 2.

x = x1
y = y1
e = −(x2−x1)
w h i l e x<=x2 :

i f s t e e p :
draw . p o i n t ((y , x))

e l s e :
draw . p o i n t ((x , y))

x += 1
e += 2∗Dy
i f e >= 0 :

y += Sy
e −= 2∗(x2−x1)

Triangle rasterization

▶ We can clip the sides of the triangle – now we fill it!
▶ If we give the vertices in a specific traversal order, then we

can specify the half-planes (we can control the edge
directions) → because, if (tx, ty) is the direction vector of the
side, then (−ty, tx) will be the normal

▶ For every pixel of the screen check if it is on the correct
half-plane specified by the sides of the triangle!

Triangle rasterization

Triangle rasterization – smarter

Triangle rasterization

▶ It could be done even smarter, but: in practice, this
brute-force approach can be used well!

Triangle rasterization

▶ We don’t want to fill it with a fixed value, we want to
interpolate the values from the vertices.

▶ Uses: color (Gouraud shading), texture coordinates, normal
vectors

▶ Let a point of the surface p = αp1 + βp2 + γp3, with α, β, γ
barycentric coordinates.

▶ We can then interpolate any other value in the same way:

c = αc1 + βc2 + γc3

▶ This is the Gouraud interpolation (not by accident)

Triangle filling 1.

f o r a l l x :
f o r a l l y :

α, β, γ = b a r y c e n t r i c (x , y)
i f α ∈ [0, 1] and β ∈ [0, 1] and γ ∈ [0, 1] :

c = αc_1 + βc_2 + γc_3
draw . p o i n t ((x , y) , c)

Barycentric coordinates

▶ Barycentric coordinates can be calculated using the following
formulas:

f01(x, y) = (y0 − y1)x + (x1 − x0)y + x0y1 − x1y0

f12(x, y) = (y1 − y2)x + (x2 − x1)y + x1y2 − x2y1

f20(x, y) = (y2 − y0)x + (x0 − x2)y + x2y0 − x0y2

▶ Then the barycentric coordinates belonging to the x, y point:

α = f12(x, y)/f12(x0, y0)

β = f20(x, y)/f20(x1, y1)

γ = f01(x, y)/f01(x2, y2)

Triangle filling 2.

x_min = min (f l o o r (x_i))
x_max = max(c e i l i n g (x_i))
y_min = min (f l o o r (y_i))
y_max = max(c e i l i n g (y_i))
f o r y i n [y_min . . y_max] :

f o r x i n [x_min . . x_max] :
α = f12(x, y)/f12(x0, y0)
β = f20(x, y)/f20(x1, y1)
γ = f01(x, y)/f01(x2, y2)
i f α>0 and β>0 and γ>0:

c = αc_1 + βc_2 + γc_3
draw . p o i n t ((x , y) , c)

Triangle filling 2.

▶ Speed up: it is unnecessary to examine every x, y point, it is
enough to go through the rectangle containing the triangle.

▶ Incremental theorem:
▶ It’s still slow, we don’t exploit the fact that we go in order on x

and y.
▶ What are these f-s?
▶ All have the f(x, y) = Ax + By + C form.
▶ Then f(x + 1, y) = f(x, y) + A, and
▶ f(x, y + 1) = f(x, y) + B

▶ Implementation: homework

Flood-fill

▶ Suitable for filling any already rasterized polygon.
▶ Input: rasterized image + one of its point
▶ Brute-force: from the specified starting point, we work

recursively:
▶ Is the color of the current point the same as the color of the

starting point?
No we stop
Yes color it, and

▶ we start again for every neighbor.

Flood-fill – neighbors

▶ Four neighbors: up, down, right, left
▶ Eight neighbors: the previous four + the corners
▶ Recursion is very rough: in practice there are smarter

algorithms → active edge list etc.

	Reminder
	Clipping
	Clipping in 2D
	Clipping in 3D

	Rasterization
	Segment rasterization
	Triangle rasterization
	Polygon rasterization

