
Computer Graphics

Ágoston Sipos
siposagoston@inf.elte.hu

Eötvös Loránd University
Faculty of Informatics

2025-2026. Fall semester

Table of contents

Recursive raytracing
Motivation
Illumination equation
Remarks

Ray tracing acceleration
Motivation
Bounding volumes

Space partitioning methods

Ray tracing in hardware

Recursive raytracing – shadow ray

Recursive raytracing – ideal reflection

Recursive raytracing – ideal refraction

Recursive raytracing – recursion

Recursive raytracing

For each pixel, we determine their color independently – we solve
the shadow and visibility tasks.

Turner Whitted, 1980

Light components

▶ We divide the path of the light into two components:
▶ Coherent component:

▶ Ideal reflection and refraction according to optics
▶ We continue to follow the path of the light

▶ Incoherent component:
▶ Everything else
▶ Of these, we only consider the direct illumination of the

abstract light source

Coherent component

Incoherent component

Notations

▶ For simplicity, the scalar product of two vectors will now be
denoted by a · b

▶ For directions we use letters ω, ω′ etc. but they are still unit
vectors i.e ω ∈ R3 : |ω| = 1

Simplified illumination equation
We solve the following, simplified illumination equation:

L(x→ ω) =

Le(x→ ω) + ka · La +
∑

ℓ∈Lights
fr(ωℓ → x→ ω)Li(ωℓ → x)(−ωℓ · n)

+ kr · L(x← ωr) + kt · L(x← ωt)

Ray tracing

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

The radiance emitted from the surface point x in the ω direction
▶ From the eye position, we emit rays through each pixel (for

example, through the center of the pixel)
▶ The direction of the rays is denoted by −ω (minus omega!)
▶ The closest intersection of the ray and the objects of the

scene gives x

Emission

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

This term describes the surface’s own radiation – emission – from
the surface point x in the ω direction

Ambient light

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

ka ∈ [0, 1] is the surface’s, La ∈ R+
0 is the the environment’s

ambient coefficient.
The ambient part of the equation approximates the amount of light
that is generally present, reaching all surfaces, regardless of their
position and not dependent on abstract light sources. Its purpose
is to replace the amount of light lost due to approximations.

Light sources

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

▶ The summation term encompasses the considered incoherent
reflections

▶ We only take into account the direct effect of light sources
▶ And only if the light source is visible from the x surface point

Light sources

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

▶ ωℓ is the unit vector from the light source to the surface point.
▶ fr(x, ωℓ, ω) now just the BRDF with diffuse and specular

reflection. (later...)
▶ −ωℓ · n is the cosine of the angle between the surface normal

and the vector pointing towards the light source ≈ in unit
time, how many photons from ωℓ hit the surface

Light sources

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

▶ If the luminous intensity of the ℓ light source towards us is Φℓ

and its position is xℓ then

Li(x, ωℓ) = v(x, xℓ) ·
Φℓ

∥x− xℓ∥2
.

▶ v(x, xℓ) ∈ [0, 1] visibility function: Is there anything between x
and light source?

Light sources – squared decay
▶ Why do we divide by the squared distance between the

intersection points and the light source?
▶ Let us consider a point light source that emits L radiance

uniformly in all directions
▶ Moving away from it, how much light would we measure per

square centimeter on the sphere inscribed around the point
light source? radiance divided by the surface area of the
sphere corresponding to the distance, i.e

Lr =
L

4πr2

▶ So the ratio of the amount of light measured at two different
distances:

Lr1

Lr2
=

L
4πr2

1
L

4πr2
2

=
r2
2

r2
1

Light sources

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

v(x, xℓ) ∈ [0, 1] function
▶ = 0, if the light source is not visible from x,
▶ = 1, if visible,
▶ ∈ (0, 1), if there are transparent objects in between.
▶ To calculate v, we launch a so-called shadow ray from x

towards xℓ and look at its intersection with the objects.

Reflection

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

▶ We consider the light arriving from the mirror direction in
proportion to kr (Fresnel coefficient)

▶ ωr is the incident vector corresponding to the ideal mirror
direction.

▶ xr is the nearest intersection point between the objects of the
scene and the ray with x origin and −ωr direction

▶ Calculating L(xr, ωr) is the same as calculating L(x, ω)
(recursion!).

▶ New ray: starts from x instead of eye position, with −ωr
direction.

Refraction

L(x, ω) = Le(x, ω) + ka · La +
∑

ℓ∈Lights
fr(x, ωℓ, ω)Li(x, ωℓ)(−ωℓ · n)

+ kr · L(xr, ωr) + kt · L(xt, ωt)

▶ We consider the light arriving from the refraction direction in
proportion to kt (Fresnel coefficient)

▶ ωt is the incident vector corresponding to the ideal refraction
direction.

▶ xt is the nearest intersection point between the objects of the
scene and the ray with x origin and −ωt direction

▶ Calculating L(xt, ωt) is again the same as calculating L(x, ω)
(recursion!).

▶ New ray: starts from x instead of eye position, with −ωt
direction.

Recursive raytracing – coherent component

Remarks – colors

▶ The formulas only calculate the amount of light, so we
actually calculated the light reaching the camera at a single
wavelength

▶ Almost everything depends on the wavelength:
▶ Light emitted by the surface and light sources: Le, Li
▶ The reflective property of the surface (BRDF approximate and

coherent coefficients): fr, ka, kr, kt
▶ The ideal refraction direction: ωt

▶ So we need to calculate it for all wavelengths in the visible
light spectrum

▶ Instead, we usually do it on just a few wavelengths
▶ In practice, it is often only on the RGB color triad

Remark – ???

Remark – self-shadowing

▶ Due to numerical inaccuracies, the point of intersection may
actually be slightly inside the body

▶ In this case, the rays shot towards the light sources may hit
the starting surface!

▶ Either omit the most recently intersected object from the
intersection calculations (from which we start), or shift the
starting point of the ray in its normal direction

▶ Let’s also pay attention to what exactly is needed: the
position(s) of the intersection or is it enough that we know
there is an intersection?

Remark – aliasing

▶ Essentially, we are sampling point by point → any changes
faster than the sampling frequency are aliased, i.e. we register
them as non-existent, lower-frequency signal components

Remark – aliasing

Remark – aliasing

Remark – aliasing

Sampling in graphics – alias

https://textureingraphics.wordpress.com/what-is-texture-mapping/anti-aliasing-problem-and-mipmapping/

Sampling in graphics – alias

▶ So far, we have only launched a single ray per pixel („per
window”).

▶ If we launch more, the Nyquist frequency increases
▶ Only one color is needed per pixel → the different colors

brought in by the rays have to be summed up somehow (e.g.
averaged)

▶ But the results of several rays can be summed up in several
ways (that is: we can filter)

Sampling in graphics – alias

▶ The alias cannot be eliminated by uniform sampling (only if
the incoming signal is guaranteed not to contain too high
frequency components)

▶ However, if the sampling is not uniform, but is done
accordingly to a proper distribution, then instead of the alias,
there will be random, high-frequency noise in the image

▶ Our eyes have already adapted to this!

Remark

▶ Notice that: above we treated light as a particle
▶ For this reason, we cannot reproduce phenomena arising from

the wave nature of the light (interference, diffraction, etc.).
▶ When do these matter?

▶ Because of interference, we see the peacock’s feathers or the
surface of the soap bubble in the color we see it in

▶ And diffraction plays a role in some of the subtle shadow
phenomena

Acceleration of intersection test – motivation

▶ The speed of the algorithm mostly depends on the speed of
the intersection test

▶ How can we speed this up?
▶ Do not intersect with objects that definitely won’t be hit by

the ray!
▶ Do not intersect with objects that certainly will give an

intersection point, that is further than the one already found!

Bounding volumes

▶ Let’s surround each object with some kind of volume, which
can be used to quickly calculate intersections.

▶ If a ray intersects the object, it must also intersect the volume
▶ It will be the most efficient if the reverse is also likely to

happen. (The closer the bounding volume is to the object)
▶ Bounding sphere: solving a quadratic equation.
▶ Bounding box: its edges are parallel to the axes, can be

calculated quickly, see previous lecture!

Additional bounding volumes – convex polyhedrons

DOP: discrete oriented polytope

Additional bounding volumes – convex polyhedrons

▶ An n-sided convex polyhedron can be expressed as the
intersection of n half-spaces (half-space: ax+ by+ cz+ d ≤ 0)

▶ That is, the planes of the side faces can be represented with
normals pointing outwards

aix + biy + ciz + di = 0 , i = 1.., n

▶ The ray-AAB intersection seen earlier can easily be
generalized for this case!

▶ Let ray p(t) = p0 + tv

Ray intersection with convex polyhedron

1. Let tnear := −∞, tfar :=∞
2. For every i ∈ {1, 2, .., n} face: let the face’s equation be

aix + biy + ciz + di = 0, such that the ni = [ai, bi, ci]T normal
of the face points outward from the polyhedron
2.1 Calculate the intersection point ti of the ray and the plane of

the face
2.2 If v · ni < 0, then tnear := max{tnear, ti}
2.3 Else tfar := min{tfar, ti}

3. If tnear > tfar, then there is no intersection
4. Else the ray steps into at tnear steps out at tfar from the

convex polyhedron (i.e. the ray intersects the convex
polyhedron if [tnear, tfar] ∩ R+ ̸= ∅)

Using bounding volumes

Bounding volume hierarchy

▶ We bound multiple volumes with larger ones.
▶ We get a tree structure.
▶ A subtree should only be evaluated if there is an intersection

with its root.

Bounding volume hierarchy

Bounding volume hierarchy

Uniform grid partitioning

▶ We cover the entire scene with a uniform 3D grid.
▶ Pre-processing: for each cell, we record the included objects.
▶ Usage: ray intersection is only performed with those objects

whose cells the ray passes through
▶ Advantage: the cells to be examined can be calculated quickly

with a line drawing algorithm! (See later on rasterization)
▶ Disadvantage: unnecessarily many cells – most of them cover

empty space.

Uniform grid partitioning

Octree

▶ Root: bounding box with edges parallel to the axes (AABB)
encompassing the entire scene

▶ Let’s cut this into eight equal parts!
▶ For each new box: if there are enough objects in it, we divide

further, otherwise we stop.
▶ Advantage: we do not divide the empty parts further

unnecessarily.
▶ Disadvantage: more complicated traversal.
▶ Disadvantage: a branch can become too deep → in practice,

a predefined depth is also given, when it’s reached we do not
divide the cells any further (even when it contains more object
than the maximum)

Octree

Octree

Octree

Quadtree

▶ Octree in a plane
▶ The current cell is always divided into four equal parts,

parallel to the axes

Quadtree

k-d tree

▶ Problem with octree: it always cuts in the middle and along
all planes – it doesn’t take objects into account.

▶ Octree: search time ≈ height of the tree. BUT! the octree is
unbalanced.

▶ k-d tree: in each step, we cut with a single plane that is
perpendicular to an axis.

▶ Order: X,Y,Z,X,Y,Z,
▶ Placement of bisecting plane based on heuristics:

▶ spatial median method
▶ body median method
▶ cost model-based method

k-d tree

*DXR

▶ Since 2018, hardware-accelerated raytracing has been
available in NVIDIA GPUs

▶ This became part of the DX12 standard
▶ There is support with Compute shaders fallback, down to the

Pascal architecture
▶ But real hardware raytracing is only on Volta, Turing and

Ampere and newer architectures

*HW RT

*HW RT

*HW RT

*HW RT

*DXR 1.0

5 new types of shaders:
▶ Raygeneration shader: shader generating the rays
▶ Intersection shader: for procedural geometries; there is a

built-in ray-triangle intersection, you don’t have to write your
own (and probably you don’t want to - see Watertight
Ray/Triangle Intersection)

▶ Closest hit shader: essentially the fragment shader
equivalent; a shader that runs once on the nearest intersection

▶ Anyhit shader: callable shader to decide transparency during
traversal; can be invoked multiple times; the order of
invocations is not guaranteed

▶ Miss shader: if there were no intersected geometry, then this
is called (here you can calculate, for example, sky color or
whatever you want)

http://jcgt.org/published/0002/01/05/paper.pdf
http://jcgt.org/published/0002/01/05/paper.pdf

*DXR 1.1

What is really interesting is that from here you can call the
TraceRay command in any shader (not only from the graphics
assembly line, but also from the compute shader!).
Also, there is DispatchIndirect, which gives you a lot of new
options.

	Recursive raytracing
	Motivation
	Illumination equation
	Remarks

	Ray tracing acceleration
	Motivation
	Bounding volumes

	Space partitioning methods
	Ray tracing in hardware

