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Motivation

▶ The complex geometric entities of our scenes (house, tree,
etc.) are made of smaller elements (door, window, leaves…)
→ the parts must be placed in space

▶ We have to place the shapes in the world, move them, etc.
▶ We also need to convert our virtual world into a

two-dimensional image
▶ → For all the steps above we will need geometric

transformations to change our shapes



Transformations

▶ Our expectations are that transformations
▶ are defined for all points
▶ map a point to a point, a line to a line, a plane to a plane
▶ preserve incidence relation
▶ should be unique and reversible



Remark

▶ We store our point in some coordinate system →
transformations are operation on these coordinates

▶ From now on, let us associate the points of Euclidean space
E3 (or plane E2) with the vectors of R3 (or R2)

▶ For this we set a point o ∈ E3, the origin and for every point
q ∈ E3, we assign a (position) vector p = q − o



Linear mapping

▶ Linear mappings are ϕ mappings for which ∀a,b ∈ R3 and
λ ∈ R
▶ ϕ(a + b) = ϕ(a) + ϕ(b) (additive)
▶ ϕ(λa) = λϕ(a) (homogeneous)

▶ Reminder: linear mappings f : Rn → Rm can be represented
with an A ∈ Rm×n matrix; f(x) = Ax, x ∈ Rn.



Projective and affine transformations – definitions

▶ In the Euclidean space extended with an ideal plane, the
mappings that are bijective, preserve points, lines, planes, and
incidences are called collineations or projective
transformations.

▶ Affine transformations are a subset of projective
transformations that map the “ordinary” Euclidean space onto
itself, and also map the ideal plane onto itself



Properties

▶ Projective and affine transformations form an algebraic group
with the operation of concatenation (composition of
transformations) → what does this mean?
▶ concatenation is associative (the operations can be grouped)
▶ there exists an identity element (identity transformation)
▶ if the transformation preserves the dimension, then it has an

inverse (can be reversed)
▶ Attention: this group is not commutative! I.e. the order of

operands matters.



Properties of affine transformations

▶ Every affine transformation can be written as a linear
transformation followed by a translation, that is if
φ : R3 → R3 is an affine transformation, then there is an
A ∈ R3×3 and b ∈ R3, for ∀x ∈ R3

φ(x) = Ax + b

▶ The matrix-vector multiplication is performed in this order:
the matrix is on the left, the vector is on the right



Properties of affine transformations

▶ φ(x) = Ax + b with homogeneous coordinates can be written
with only one matrix-vector multiplication:

[
A b

[0, 0, 0] 1

]
∈ R4×4

▶ Because in this case[
A b

[0, 0, 0] 1

]
·
[
x
1

]
=

[
A · x + b · 1
0 · x + 1 · 1

]
=

[
A · x + b

1

]



Properties of affine transformations
▶ Barycentric coordinates are not affected by affine

transformations (barycentric coordinates are invariant under
affine transformations)

▶ Proof: αi be the barycentric coordinates of x wrt. xi, then

φ(x) = φ

( n∑
i=0

αixi

)

= A
( n∑

i=0
αixi

)
+ b

= A
n∑

i=0
αixi +

n∑
i=0

αib

=
n∑

i=0
αi(Axi + b) =

n∑
i=0

αiφ(xi)



Specifying affine transformations
▶ An affine transformation in En is uniquely defined with n + 1

affinely independent points and their image
▶ That is, for example, in a plane if there are three points

pi =

xi
yi
1

 , i = 0, 1, 2

point and their images, in order

qi =

x′i
y′i
1

 , i = 0, 1, 2

then for R ∈ R3×3 transformation, transforming pi into qi

R · [p0,p1,p2] = [q0,q1,q2] ⇒ R = [q0,q1,q2] · [p0,p1,p2]
−1



Specifying affine transformations

▶ Projective transformation in En is uniquely defined with n + 2
affinely independent points and their image

▶ Then in a plane we need 4: let P ∈ R3×3 and
α0, α1, α2, α3 ∈ R, then solve for P

P · [p0,p1,p2,p3] = [α0q0, α1q1, α2q2, α3q3]
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Translation

▶ We shift every point with a d vector:
x′ = x + d

▶ Usually denoted by T(dx, dy, dz)

▶ For the matrix form we need homogeneous coordinates, with
w = 1, then it can be written as a 4 × 4 matrix:

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1





Translation

▶ After all, if we use the homogeneous coordinates of the point
x, then

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 ·


x
y
z
1

 =


1 · x + 0 · y + 0 · z + 1 · dx
0 · x + 1 · y + 0 · z + 1 · dy
0 · x + 0 · y + 1 · z + 1 · dz

1





Properties

▶ Translations are a commutative subset of the affine
transformations

▶ The inverse of T(a, b, c) is T−1(a, b, c) = T(−a,−b,−c)



Rotation

▶ Rotating in XY plane (in practice around Z axis) θ degrees:

x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ.

▶ Matrix form:[
x′
y′
]
= x

[
cos θ
sin θ

]
+ y

[
− sin θ
cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]

▶ Similar on XZ and YZ plane.



Rotation matrices

Around Z axis

RZ =


c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

 ,

Around Y axis

RY =


c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

 ,

Around X axis

RX =


1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

 ,

where c = cos θ and s = sin θ.



Properties

▶ Rotations around the same axis are a commutative subset of
the affine transformations

▶ Rotations in space can be written as a 3 × 3 matrix (linear
transformation)

▶ Translation and rotation are not commutative!
▶ The inverse of the rotation is a rotation with equal magnitude,

but in the opposite direction, e.g.: R−1
Z (θ) = RZ(−θ)



Arbitrary rotation

Any orientation can be produced by successively using the three
rotations.

R(α, β, γ) =cosα − sinα 0
sinα cosα 0

0 0 1

 ·
 cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

 ·
1 0 0

0 cos γ − sin γ
0 sin γ cos γ





Rotating around arbitrary axis

▶ Using what we already know:
▶ shift our rotation axis into the origin (T)
▶ rotate it around an axis into the plane of the other two (e.g

around RZ)
▶ in this plane, rotate it with one the two axes into the other

(e.g RY)
▶ do the rotation (e.g with RX, but: around the new (X”) axis!)
▶ we apply the inverses of the previous transformations

▶ For example Mx = (T−1R−1
Z R−1

Y RXRYRZT)x



*Rotating around arbitrary axis – Rodrigues formula

A rotation around an arbitrary axis can be given by a unit vector z,
which gives the axis of the rotation, and an angle θ.
This is described by the Rodrigues formula, using which:

v′ = Rodrigues(θ, z)v

v′ = v · cos θ + (z × v) · sin θ + z · ⟨z, v⟩ · (1 − cos θ)



Yaw, pitch, roll

▶ The vertical (yaw), lateral (transverse) (pitch) and
longitudinal (roll) rotations of an object are given at the same
time.

▶ A commonly used method in aeronautics and robotics.
▶ It is practically the same as if we were rotating around three

”ordinary” axis.
▶ It only works correctly if the axes of the object coincide with

the axes of the coordinate system.
▶ Most API supports it.



Rigid body transformations

▶ Transformations that can be described as a combination of
translations and rotations around an axis are called rigid body
transformations

▶ The shape and size of objects are not changed



Scaling



Scaling

▶ Along the x, y, z axes, we “pull apart” or “compress” the
shape, that is, we choose a different scale – even
independently

▶ Matrix form:

S(sx, sy, sz) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


▶ If sx = sy = sz it is an isotropic scaling



Special case: reflection

▶ If any of sx, sy, sz is negative
▶ if one is negative: reflection to the corresponding plane
▶ if two are negative: reflection to the remaining axis
▶ if all three are negative: central reflection

▶ Pay attention: if there is an odd number of negative
coefficients, the winding also changes!



Winding?

▶ Using the basis vectors i, j, k, if φ : R3 → R3 is a linear
transformation, then

φ(p) = φ(xi + yj + zk) = xφ(i) + yφ(j) + zφ(k)
▶ → if the determinant of a transformation matrix is negative,

the winding (their direction in space) changes



Special case: projection

▶ If any of sx, sy, sz is zero
▶ if one is zero: we project onto a plane perpendicular to the

direction
▶ if two are zero: we ”project” onto an axis
▶ if all three are zero: we project everything into the origin…

▶ Remark: determinant is zero! → there is no inverse!



Shearing

Example
Consider a deck of cards



Shearing

If, for example, we change the x, y values in each point
proportionally to z:

N =


1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1





Shearing

In general:

N =


1 a b 0
0 1 c 0
0 0 1 0
0 0 0 1





Change of basis
▶ Let’s assume that instead of orthonormal basis vectors of i, j, k

we want to switch to u, v,w an orthonormal basis (the
coordinates of the new basis vectors are known in the old
basis).

▶ What will be the new x′ = [x′, y′, z′]T coordinates (in the new
base) of the point x = [x, y, z]T (in the old base) That is, for
what x′, y′, z′ is it true that x = x′u + y′v + z′w?

▶ x = [u, v,w]x′ = Bx′ → x′ = B−1x
▶ The inverse of an orthonormal matrix is the transpose of the

matrix, so our matrix M = B−1 giving the new coordinates
has the following form

M =


ux uy uz 0
vx vy vz 0
wx wy wz 0
0 0 0 1


▶ If the coordinates of the new origin are c, then

M = B−1T(−cx,−cy,−cz)



Commutativity

▶ Matrix multiplication is not commutative, so in general it is
not true that

ABv = BAv
▶ This is good, since in general transformations are not

commutative either



Example

Rotation then translation Translation then rotation



Determinants of transformation matrices

▶ When scaling, we saw that if one or three coefficients of the
transformation are negative, it changes the winding direction.

▶ In general:
▶ If det(A) > 0, then the winding is unchanged
▶ If det(A) < 0, then the winding is reversed



Transformation of normals
▶ Let g a segment in plane, with n normal vector. Let S be a

transformation describing a 2× stretch along the x axis.
▶ Problem: g′ can be obtained by transforming its two

endpoints. What about the normal vector of g′? Will it be
n′ = Sn? NO!



Transformation of normals
▶ Let’s examine the equation of the tangent plane given by the

normal vector!
▶ Let p be a point on the tangent plane, then x is on the plane

if and only if
⟨x − p,n⟩ = 0

▶ Then with any arbitrary (invertible) A transformation:

⟨A−1A(x − p),n⟩ = 0

▶ Based on the rules of scalar product and matrix
multiplication, we get that

⟨A(x − p),
(
A−1)T n⟩ = 0

▶ That is, instead of the A matrix, the normal vectors must be
multiplied by its inverse transpose!



Remark

▶ The affine transformations of the plane are uniquely defined
by three independent points and their images

▶ The affine transformations of space are uniquely defined by
four independent points and their images



Motivation

▶ We want to produce an image of our scene: project it onto a
plane

▶ The image seen by humans cannot be reproduced using affine
transformations. The parallel lines „moving away” from the
observer appear to join

▶ This view can be reproduced with central projection. This
transformation is linear in homogeneous space.

▶ The affine transformations did not „hurt” the ideal elements,
but for the above, this is „necessary”



General case

If the last row of a homogeneous transformation matrix is not
[0, 0, 0, 1], then it is a homogeneous linear transformation that is a
nonlinear transformation of the Euclidean space.



Parallel projection

▶ The matrix describing it is simple, for example the projection
onto the XY plane 

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


▶ This is still an affine transformation (scaling)



Perspective transformation

▶ It implements a central projection.
▶ We ”look” at the space from the origin along the z axis.
▶ A frustum corresponds to the visible space.
▶ The transformation makes parallel lines out of the projection

lines that meet at the eye position.
▶ Transforms the frustum into a rectangular cuboid
▶ Its parameters:

▶ vertical angle of the frustum,
▶ the ratio of the sides of the base,
▶ distance of the near clipping plane,
▶ distance of the far clipping plane



Perspective transformation



Homogeneous division

▶ Since the last row of M „real” projective transformation is not
[0, 0, 0, 1]T, therefore

[x, y, z,w]T = Mv

after transformation, w ̸= 1 in general.
▶ If we want to transfer this point to the Euclidean space

(because we want to display it, for example), then we have to
divide by w.

▶ (Only if w ̸= 0, of course)
▶ This is called homogeneous division.



Central projection



Central projection



Central projection



Central projection

▶ That is:

x′ = x
zd, y′ = y

zd, z′ = z
zd = d

▶ Matrix form of projecting to a plane, which is parallel to XY
plane and located d units along Z axis with origin as the
projection center: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

d 0


▶ After homogeneous division (with z

d) we get the above



Remark

▶ The projective transformations of the plane are uniquely
defined by four independent points and their images

▶ The projective transformations of the space are uniquely
defined by five independent points and their images



Transformation matrices



Transformation matrices

▶ What happens if the fourth coordinate of our vector is zero
(i.e, if the four number represents a vector)?

▶ The translation part does not affect it!
▶ Pay attention: some use a convention to multiply from the

left with the vector, in that case the transpose of our matrices
should be used.



Transformation matrices
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