Computer Graphics

Ágoston Sipos siposagoston@inf.elte.hu

Eötvös Loránd University Faculty of Informatics

2025-2026. Fall semester

Table of Contents

Motivation

Transformations

Transformations in general

Notable affine transformations

Translation

Rotation

Scaling

Shearing

Change of basis

Overview

Projective transformation

Summary

Motivation

- ► The complex geometric entities of our scenes (house, tree, etc.) are made of smaller elements (door, window, leaves...)
 → the parts must be placed in space
- We have to place the shapes in the world, move them, etc.
- We also need to convert our virtual world into a two-dimensional image
- → For all the steps above we will need geometric transformations to change our shapes

Transformations

- Our expectations are that transformations
 - are defined for all points
 - map a point to a point, a line to a line, a plane to a plane
 - preserve incidence relation
 - should be unique and reversible

Remark

- ightharpoonup We store our point in some coordinate system ightharpoonup transformations are operation on these coordinates
- From now on, let us associate the points of Euclidean space \mathbb{E}^3 (or plane \mathbb{E}^2) with the vectors of \mathbb{R}^3 (or \mathbb{R}^2)
- For this we set a point $\mathbf{o} \in \mathbb{E}^3$, the origin and for every point $\mathbf{q} \in \mathbb{E}^3$, we assign a (position) vector $\mathbf{p} = \mathbf{q} \mathbf{o}$

Linear mapping

- ▶ Linear mappings are ϕ mappings for which $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$
 - $\phi(\mathbf{a} + \mathbf{b}) = \phi(\mathbf{a}) + \phi(\mathbf{b})$ (additive)
 - $\phi(\lambda \mathbf{a}) = \lambda \phi(\mathbf{a})$ (homogeneous)
- ▶ Reminder: linear mappings $f: \mathbb{R}^n \to \mathbb{R}^m$ can be represented with an $\mathbf{A} \in \mathbb{R}^{m \times n}$ matrix; $f(\mathbf{x}) = \mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n$.

Projective and affine transformations – definitions

- In the Euclidean space extended with an ideal plane, the mappings that are bijective, preserve points, lines, planes, and incidences are called *collineations* or *projective* transformations.
- Affine transformations are a subset of projective transformations that map the "ordinary" Euclidean space onto itself, and also map the ideal plane onto itself

Properties

- Projective and affine transformations form an algebraic group with the operation of concatenation (composition of transformations) → what does this mean?
 - concatenation is associative (the operations can be grouped)
 - there exists an identity element (identity transformation)
 - if the transformation preserves the dimension, then it has an inverse (can be reversed)
- Attention: this group is not commutative! I.e. the order of operands matters.

Properties of affine transformations

Every affine transformation can be written as a linear transformation followed by a translation, that is if $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ is an affine transformation, then there is an $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ and $\mathbf{b} \in \mathbb{R}^3$, for $\forall \mathbf{x} \in \mathbb{R}^3$

$$\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$

► The matrix-vector multiplication is performed in this order: the matrix is on the left, the vector is on the right

Properties of affine transformations

• $\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ with homogeneous coordinates can be written with only one matrix-vector multiplication:

$$\begin{bmatrix} \boldsymbol{A} & \boldsymbol{b} \\ [0,0,0] & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Because in this case

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \\ [0,0,0] & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \cdot \mathbf{x} + \mathbf{b} \cdot 1 \\ \mathbf{0} \cdot \mathbf{x} + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \cdot \mathbf{x} + \mathbf{b} \\ 1 \end{bmatrix}$$

Properties of affine transformations

- Barycentric coordinates are not affected by affine transformations (barycentric coordinates are invariant under affine transformations)
- ▶ Proof: α_i be the barycentric coordinates of **x** wrt. \mathbf{x}_i , then

$$\varphi(\mathbf{x}) = \varphi\left(\sum_{i=0}^{n} \alpha_i \mathbf{x}_i\right)$$

$$= \mathbf{A}\left(\sum_{i=0}^{n} \alpha_i \mathbf{x}_i\right) + \mathbf{b}$$

$$= \mathbf{A}\sum_{i=0}^{n} \alpha_i \mathbf{x}_i + \sum_{i=0}^{n} \alpha_i \mathbf{b}$$

$$= \sum_{i=0}^{n} \alpha_i (\mathbf{A}\mathbf{x}_i + \mathbf{b}) = \sum_{i=0}^{n} \alpha_i \varphi(\mathbf{x}_i)$$

Specifying affine transformations

- An affine transformation in \mathbb{E}^n is uniquely defined with n+1 affinely independent points and their image
- ▶ That is, for example, in a plane if there are three points

$$\mathbf{p}_i = \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}, i = 0, 1, 2$$

point and their images, in order

$$\mathbf{q}_i = \begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix}, i = 0, 1, 2$$

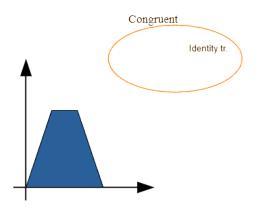
then for $\mathbf{R} \in \mathbb{R}^{3 \times 3}$ transformation, transforming \mathbf{p}_i into \mathbf{q}_i

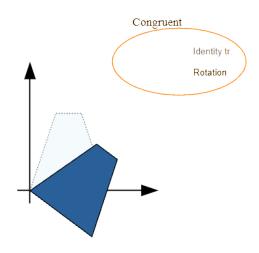
$$\mathbf{R} \cdot [\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2] = [\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2] \Rightarrow \mathbf{R} = [\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2] \cdot [\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2]^{-1}$$

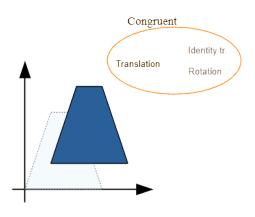
Specifying affine transformations

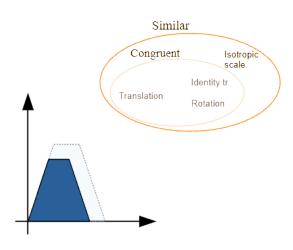
- Projective transformation in \mathbb{E}^n is uniquely defined with n+2 affinely independent points and their image
- ► Then in a plane we need 4: let $\mathbf{P} \in \mathbb{R}^{3\times3}$ and $\alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, then solve for \mathbf{P}

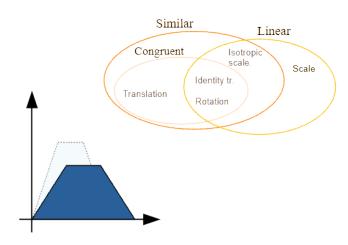
$$\mathbf{P}\cdot[\mathbf{p}_0,\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3]=[\alpha_0\mathbf{q}_0,\alpha_1\mathbf{q}_1,\alpha_2\mathbf{q}_2,\alpha_3\mathbf{q}_3]$$

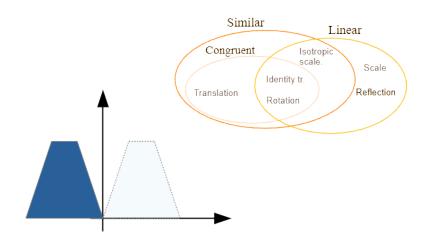




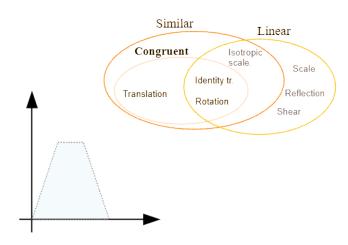


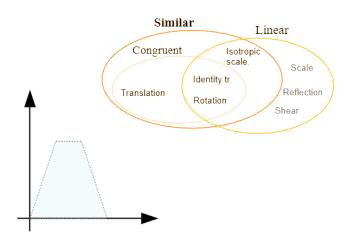


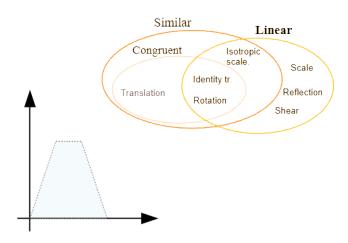


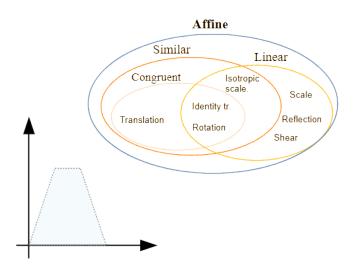


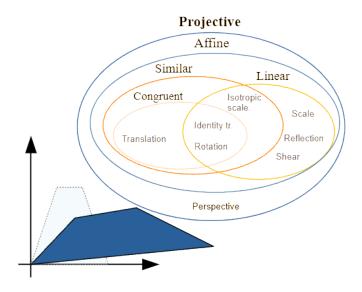




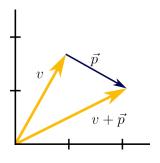








Translation



Translation

We shift every point with a d vector:

$$\mathbf{x}' = \mathbf{x} + \mathbf{d}$$

- ► Usually denoted by $\mathbf{T}(d_x, d_y, d_z)$
- For the matrix form we need homogeneous coordinates, with w = 1, then it can be written as a 4 × 4 matrix:

$$\left[\begin{array}{cccc} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{array}\right]$$

Translation

 After all, if we use the homogeneous coordinates of the point x, then

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot x + 0 \cdot y + 0 \cdot z + 1 \cdot d_x \\ 0 \cdot x + 1 \cdot y + 0 \cdot z + 1 \cdot d_y \\ 0 \cdot x + 0 \cdot y + 1 \cdot z + 1 \cdot d_z \\ 1 \end{bmatrix}$$

Properties

- Translations are a commutative subset of the affine transformations
- ▶ The inverse of T(a, b, c) is $T^{-1}(a, b, c) = T(-a, -b, -c)$

Rotation

▶ Rotating in XY plane (in practice around Z axis) θ degrees:

$$x' = x\cos\theta - y\sin\theta$$
$$y' = x\sin\theta + y\cos\theta.$$

Matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = x \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + y \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Similar on XZ and YZ plane.

Rotation matrices

Around Z axis Around Y axis Around X axis
$$\mathbf{R}_Z = \begin{bmatrix} c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{R}_Y = \begin{bmatrix} c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{R}_X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & -s & 0 \\ 0 & s & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

where $c = \cos \theta$ and $s = \sin \theta$.

Properties

- Rotations around the same axis are a commutative subset of the affine transformations
- ▶ Rotations in space can be written as a 3×3 matrix (linear transformation)
- Translation and rotation are not commutative!
- The inverse of the rotation is a rotation with equal magnitude, but in the opposite direction, e.g.: $\mathbf{R}_Z^{-1}(\theta) = \mathbf{R}_Z(-\theta)$

Arbitrary rotation

Any orientation can be produced by successively using the three rotations.

$$\begin{aligned} \mathbf{R}(\alpha,\beta,\gamma) &= \\ \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\gamma & -\sin\gamma \\ 0 & \sin\gamma & \cos\gamma \end{bmatrix} \end{aligned}$$

Rotating around arbitrary axis

- Using what we already know:
 - shift our rotation axis into the origin (T)
 - rotate it around an axis into the plane of the other two (e.g around \mathbf{R}_Z)
 - in this plane, rotate it with one the two axes into the other (e.g R_Y)
 - be do the rotation (e.g with \mathbf{R}_{X} , but: around the new (X") axis!)
 - we apply the inverses of the previous transformations
- For example $\mathbf{M}\mathbf{x} = (\mathbf{T}^{-1}\mathbf{R}_Z^{-1}\mathbf{R}_Y^{-1}\mathbf{R}_X\mathbf{R}_Y\mathbf{R}_Z\mathbf{T})\mathbf{x}$

*Rotating around arbitrary axis – Rodrigues formula

A rotation around an arbitrary axis can be given by a unit vector \mathbf{z} , which gives the axis of the rotation, and an angle θ . This is described by the *Rodrigues formula*, using which:

$$\mathbf{v}' = \mathsf{Rodrigues}(\theta, \mathbf{z})\mathbf{v}$$

$$\mathbf{v}' = \mathbf{v} \cdot \cos \theta + (\mathbf{z} \times \mathbf{v}) \cdot \sin \theta + \mathbf{z} \cdot \langle \mathbf{z}, \mathbf{v} \rangle \cdot (1 - \cos \theta)$$

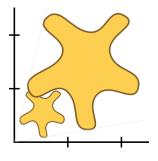
Yaw, pitch, roll

- ► The vertical (yaw), lateral (transverse) (pitch) and longitudinal (roll) rotations of an object are given at the same time.
- A commonly used method in aeronautics and robotics.
- ► It is practically the same as if we were rotating around three "ordinary" axis.
- ▶ It only works correctly if the axes of the object coincide with the axes of the coordinate system.
- Most API supports it.

Rigid body transformations

- Transformations that can be described as a combination of translations and rotations around an axis are called *rigid body* transformations
- ▶ The shape and size of objects are not changed

Scaling



Scaling

- ► Along the x, y, z axes, we "pull apart" or "compress" the shape, that is, we choose a different scale – even independently
- Matrix form:

$$\mathbf{S}(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• If $s_x = s_y = s_z$ it is an isotropic scaling

Special case: reflection

- ▶ If any of s_x , s_y , s_z is negative
 - if one is negative: reflection to the corresponding plane
 - ▶ if two are negative: reflection to the remaining axis
 - ▶ if all three are negative: central reflection
- Pay attention: if there is an odd number of negative coefficients, the winding also changes!

Winding?

• Using the basis vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$, if $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation, then

$$\varphi(\mathbf{p}) = \varphi(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = x\varphi(\mathbf{i}) + y\varphi(\mathbf{j}) + z\varphi(\mathbf{k})$$

ightharpoonup if the determinant of a transformation matrix is negative, the winding (their direction in space) changes

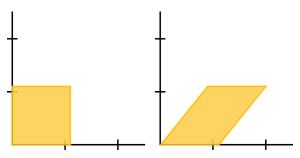
Special case: projection

- ▶ If any of s_x , s_y , s_z is zero
 - if one is zero: we project onto a plane perpendicular to the direction
 - ▶ if two are zero: we "project" onto an axis
 - ▶ if all three are zero: we project everything into the origin...
- ▶ Remark: determinant is zero! → there is no inverse!

Shearing

Example

Consider a deck of cards



Shearing

If, for example, we change the x, y values in each point proportionally to z:

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shearing

In general:

$$\mathbf{N} = \begin{bmatrix} 1 & a & b & 0 \\ 0 & 1 & c & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Change of basis

- ▶ Let's assume that instead of orthonormal basis vectors of i, j, k we want to switch to u, v, w an orthonormal basis (the coordinates of the new basis vectors are known in the old basis).
- ▶ What will be the new $\mathbf{x}' = [x', y', z']^T$ coordinates (in the new base) of the point $\mathbf{x} = [x, y, z]^T$ (in the old base) That is, for what x', y', z' is it true that $\mathbf{x} = x'\mathbf{u} + y'\mathbf{v} + z'\mathbf{w}$?
- $ightharpoonup \mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}] \mathbf{x}' = \mathbf{B} \mathbf{x}' o \mathbf{x}' = \mathbf{B}^{-1} \mathbf{x}'$
- The inverse of an orthonormal matrix is the transpose of the matrix, so our matrix $\mathbf{M} = \mathbf{B}^{-1}$ giving the new coordinates has the following form

$$\mathbf{M} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► If the coordinates of the new origin are **c**, then $\mathbf{M} = \mathbf{B}^{-1}\mathbf{T}(-c_x, -c_y, -c_z)$

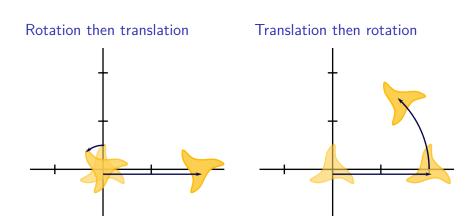
Commutativity

Matrix multiplication is not commutative, so in general it is not true that

$$\mathbf{ABv} = \mathbf{BAv}$$

► This is good, since in general transformations are not commutative either

Example

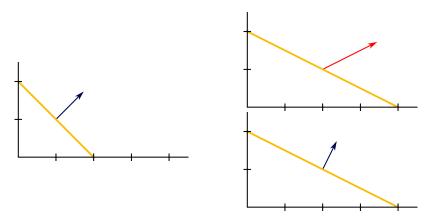


Determinants of transformation matrices

- ▶ When scaling, we saw that if one or three coefficients of the transformation are negative, it changes the winding direction.
- ► In general:
- If $det(\mathbf{A}) > 0$, then the winding is unchanged
- ▶ If det(A) < 0, then the winding is reversed

Transformation of normals

- Let g a segment in plane, with \mathbf{n} normal vector. Let \mathbf{S} be a transformation describing a $2\times$ stretch along the x axis.
- Problem: g' can be obtained by transforming its two endpoints. What about the normal vector of g'? Will it be n' = Sn? NO!



Transformation of normals

- Let's examine the equation of the tangent plane given by the normal vector!
- ► Let **p** be a point on the tangent plane, then **x** is on the plane if and only if

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{n} \rangle = 0$$

Then with any arbitrary (invertible) A transformation:

$$\langle \mathbf{A}^{-1}\mathbf{A}(\mathbf{x}-\mathbf{p}),\mathbf{n}\rangle=0$$

 Based on the rules of scalar product and matrix multiplication, we get that

$$\langle \mathbf{A}(\mathbf{x} - \mathbf{p}), \left(\mathbf{A}^{-1}\right)^T \mathbf{n} \rangle = 0$$

► That is, instead of the A matrix, the normal vectors must be multiplied by its inverse transpose!

Remark

- ► The affine transformations of the plane are uniquely defined by three independent points and their images
- ► The affine transformations of space are uniquely defined by four independent points and their images

Motivation

- We want to produce an image of our scene: project it onto a plane
- ► The image seen by humans cannot be reproduced using affine transformations. The parallel lines "moving away" from the observer appear to join
- ► This view can be reproduced with *central projection*. This transformation is linear in *homogeneous space*.
- ► The affine transformations did not "hurt" the ideal elements, but for the above, this is "necessary"

General case

If the last row of a homogeneous transformation matrix is not [0,0,0,1], then it is a homogeneous linear transformation that is a nonlinear transformation of the Euclidean space.

Parallel projection

► The matrix describing it is simple, for example the projection onto the *XY* plane

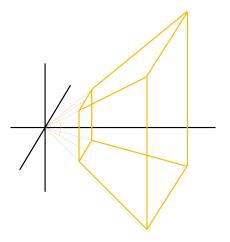
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

► This is still an affine transformation (scaling)

Perspective transformation

- It implements a central projection.
- ▶ We "look" at the space from the origin along the z axis.
- A frustum corresponds to the visible space.
- ► The transformation makes parallel lines out of the projection lines that meet at the eye position.
- ► Transforms the frustum into a rectangular cuboid
- ► Its parameters:
 - vertical angle of the frustum,
 - the ratio of the sides of the base,
 - distance of the near clipping plane,
 - distance of the far clipping plane

Perspective transformation



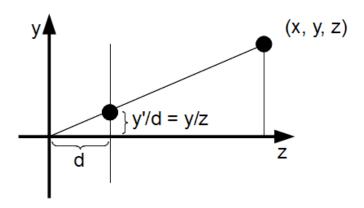
Homogeneous division

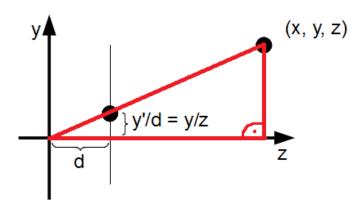
Since the last row of \mathbf{M} "real" projective transformation is not $[0,0,0,1]^T$, therefore

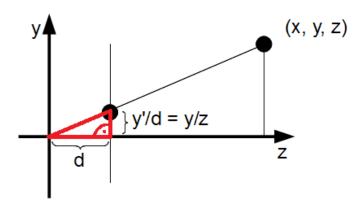
$$[x, y, z, w]^T = \mathbf{Mv}$$

after transformation, $w \neq 1$ in general.

- ▶ If we want to transfer this point to the Euclidean space (because we want to display it, for example), then we have to divide by w.
- ▶ (Only if $w \neq 0$, of course)
- This is called homogeneous division.







► That is:

$$x' = \frac{x}{z}d,$$
 $y' = \frac{y}{z}d,$ $z' = \frac{z}{z}d = d$

Matrix form of projecting to a plane, which is parallel to XY plane and located d units along Z axis with origin as the projection center:

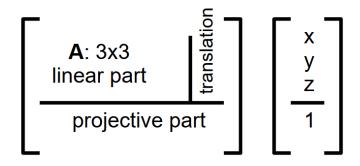
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$

After homogeneous division (with $\frac{z}{d}$) we get the above

Remark

- ► The projective transformations of the plane are uniquely defined by four independent points and their images
- ► The projective transformations of the space are uniquely defined by five independent points and their images

Transformation matrices



Transformation matrices

- What happens if the fourth coordinate of our vector is zero (i.e, if the four number represents a vector)?
- The translation part does not affect it!
- Pay attention: some use a convention to multiply from the left with the vector, in that case the transpose of our matrices should be used.

Transformation matrices

