
Computer Graphics

Ágoston Sipos
siposagoston@inf.elte.hu

Eötvös Loránd University
Faculty of Informatics

2025-2026. Fall semester
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▶ Room: D 2.610
▶ Consultation: after a discussion by email

▶ Preferred time: Monday between 12 and 15
▶ Information on the Canvas

siposagoston@inf.elte.hu
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Modelling

▶ How do we represent our virtual world?
▶ How do we represent the points of our virtual space, how do

we store it on the computer?
→ Coordinate systems

▶ How do we represent the simple geometric building blocks
(line, plane, triangle, etc.)?
→ Set of points
→ Description in different coordinate systems



Points, vectors

▶ Point: an element of the Euclidean plane/space that has no
extent whatsoever.

▶ Vector:
▶ algebraically: element of a vector space.
▶ geometrically: a displacement that has direction and

magnitude
▶ additional operations interpreted on vectors: addition,

subtraction, multiplication by a scalar, cross product (result is
a vector), dot product (result is a scalar)



Addition



Subtraction



Dot product

Let two vectors be, a = [ax, ay, az] and b = [bx, by, bz]. Dot
product is denoted by ⟨a,b⟩, i.e

⟨a,b⟩ = axbx + ayby + azbz.

This can also be expressed as

⟨a,b⟩ = |a| · |b| · cos(α),

where α is the angle between a and b vectors.



Cross product (3D)

▶ a × b is perpendicular to both a and b
▶ a,b and a × b: right-hand rule



Cross product of vectors

Cross product as a determinant:ax
ay
az

×

bx
by
bz

 =

∣∣∣∣∣∣
i j k
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bx by bz
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∣∣∣∣ ay az
by bz
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∣∣∣∣+ k ·
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bx by
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−axbz + azbx
axby − aybx
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Points, vectors

▶ Point and vector can be represented with coordinates of a
chosen coordinate system. BUT: let’s pay attention to the
operations that can be performed!

▶ Operations between points and vectors:
▶ point + vector = point displaced point
▶ point – point = vector difference vector
▶ point + point not interpreted!



Notation

▶ Points: a ∈ E2,b ∈ E3, ...
▶ Vectors: v ∈ Rn, n = 2, 3, ...

▶ special: [v]0 ∈ Rn is a vector that is unit long i.e
| [v]0 | = || [v]0 ||2 = 1.

▶ Lines: e, f, g, ...
▶ Planes: S, ...
▶ Matrices: M ∈ Rn×m



Coordinate-system

▶ Uniquely represents point of space with n-tuples

pl.: p =

 x
y
z

 ∈ E3

▶ It allows storing points on the computer
▶ It allows the use of algebraic and analytical tools to solve

geometric problems
▶ It may be easier to describe a problem in a coordinate system

that fits it well



Cartesian coordinate system

▶ Descartes, 1637.: dissertation on the method (Discours de la
méthode pour bien conduire sa raison et chercher la vérité
dans les sciences)

▶ Most of the time we come across this, this is the easiest and
most common way of representing points



Cartesian coordinate system

▶ For each finite point of the Euclidean space [plane] we assign
an ordered, real number triplet (x, y, z) [pair (x, y)]

▶ We define Cartesian coordinate system with a starting point
(origin, o) in the space, and an orthonormal system: three
pairwise perpendicular unit vectors: i, j and k (these specify
the direction of the x, y, z axes).

▶ Then the coordinates x, y, z of a point p in row are the same
as the signed orthogonal projections of the vector p − o to the
orthonormal basis vectors i, j, k.

▶ Reminder: the signed orthogonal projection of the vector a on
unit vector [b]0 is ⟨a, [b]0⟩ = |a| cos∠(a, [b]0)



Signed orthogonal projection



Geometric interpretation

▶ More conceptually: p(a, b, c) is the point from the origin
which we get by moving a units along the x axis, then b units
along the y axis, and finally c units along z.



Geometric interpretation

▶ According to the interpretation above, using the unit-long
base vectors i, j, k pointing in the direction of the coordinate
axes, [a, b, c]T the coordinates describe the following point:

p = o + ai + bj + ck

= o + a

 1
0
0

+ b

 0
1
0

+ c

 0
0
1





Orientation – right-handed system



Orientation – left-handed system



Orientation – left-handed system



Calculating distance

▶ The distance between two points a and b is d if:
d2 = (b1 − a1)2 + (b2 − a2)2

▶ This is due to Pitagoras’s theorem: the sum of the squared
sides of the right-angled triangle are equal

▶ → this opens up the possibility of describing new shapes (e.g.
circle, sphere)

▶ Generally:
a,b ∈ En : d =

√
⟨b − a,b − a⟩ =

√∑n
i=1 (bi − ai)2

▶ Length of a vector: v ∈ Rn : ||v||2 =
√

⟨v, v⟩ =
√∑n

i=1 v2
i



Planar polar coordinate system
▶ Is defined by a starting point o (reference point) and a

half-line starting from it (polar axis).
▶ The location of a point p is determined by two data: (r, θ)

▶ r ≥ 0: is the distance between p and o
▶ θ ∈ [0, 2π): is the angle between the polar axis and the

half-line starting from o and going towards p



Conversions

▶ Polar → Cartesian: (r, θ) → (x, y)
▶ x = r cos θ
▶ y = r sin θ

▶ Cartesian → Polar: (x, y) → (r, θ)
▶ r =

√
x2 + y2

▶

θ =


arctg( y

x ), x > 0 ∧ y ≥ 0
arctg( y

x ) + 2π, x > 0 ∧ y < 0
arctg( y

x ) + π, x < 0
π
2 , x = 0 ∧ y > 0
3π
2 , x = 0 ∧ y < 0

= atan2(y, x)



Conversions

▶ The above is true if the Cartesian origin and the polar
reference point, respectively the Cartesian x-axis and the polar
axis, are the same.

▶ But what if x = 0, y = 0? In this case, with r = 0, we get
back the origin with an arbitrary angle! The polar angle is not
clear, we check whether r = 0 before trying to use the
conversion formulas from above



Remark

▶ We usually use it when it fits well with the things we want to
depict, e.g. circular motion

▶ Drawbacks: moving from one polar coordinate system (PCS)
to another is expensive, calculating derivatives is expensive, ...



Spherical coordinates

▶ Spherical coordinate system; defined by a base plane (and its
PCS) and a perpendicular ”Z axis”

▶ A point p in space is represented by three data: (r, θ, ϕ)
▶ (ϱ, ϕ): polar coordinates of the projection of p onto the base

plane
▶ θ ∈ [0, π]: the angle between Z axis and the half-line from o

towards p
▶ r: the distance between p and origin (if r = 0 then once again

the two polar angles can be anything! This must be checked
before conversions)



Spherical coordinates



Spherical coordinates



Conversions

▶ Under conditions similar to the planar:
▶ Spherical → Cartesian: (r, θ, ϕ) → (x, y, z)

x = r sin θ cosϕ,
y = r sin θ sinϕ,
z = r cos θ

▶ Cartesian → Spherical: (x, y, z) → (r, θ, ϕ)

r =
√

x2 + y2 + z2

ϕ = atan2(y, x), r ̸= 0

θ = arccos
z
r , r ̸= 0



Remark

▶ It is useful, for example, for identifying points on the earth’s
surface (but there θ ∈ [−π/2, π/2]).

▶ The parametric representation of a sphere or ellipsoid also
utilizes spherical coordinates



Barycentric coordinates

▶ August Ferdinand Möbius [1827]
▶ Motivation: often only a specific, finite part of the space is

interesting to us. We are looking for a representation more
”balanced” than the Cartesian representation.



Motivation: intervals

What u, v weights should we place at the ends of the rod if we
want the rod to stay in balance when elevated at the point
denoted by a triangle?



Motivation: intervals

▶ It does not tilt if (x − a)v = (b − x)u, where x is the position
of the triangle.

▶ Only the ratio of u, v is bound by the above, let us further
assume that u + v = 1

▶ Then the weights should be:

u =
x − a
b − a , v =

b − x
b − a



Center of mass

▶ Mechanical analogy: center of mass for a point system
▶ Let us have 3 points in the plane and place weight mi ∈ R in

each pi point. Then the center of mass is:

m =
2∑

i=0

mi∑n
i=0 mi

pi

▶ Homogeneous representation: multiplying the weights by a
number h ̸= 0 gives the same point.



Barycentric coordinates

▶ If a0, ..., an points in En span the space (that is, they do not
fall into an n − 1 dimensional subspace), then for any x point
of the space we can find λ0, ..., λn real numbers that uniquely
represents it such that

x =
n∑

i=0
λiai,

where λi barycentric coordinates satisfy that,
n∑

i=0
λi = 1.



Remark

▶ In a plane, you need 3 affinely independent points (those that
do not fall either in a straight line or a point), in space 4
affinely independent points

▶ If ∀i λi ≥ 0, then we are talking about a convex combination
and the result falls inside the convex hull of the points

▶ Affine transformations don’t change barycentric coordinates
(see later)



Planar barycentric coordinate system



Barycentric → Cartesian conversion

▶ Let (u, v,w) be the barycentric coordinates of a point and
p1 = (x1, y1),p2 = (x2, y2),p3 = (x3, y3) ∈ E2 affinely
independent points.

▶ Then the Cartesian coordinates of the point x(x, y)
represented by (u, v,w) are x = up1 + vp2 + wp3, i.e.

x = ux1 + vx2 + wx3

y = uy1 + vy2 + wy3



Planar barycentric coordinate system

▶ Let ∆(a,b, c) :=

∣∣∣∣∣∣
1 1 1
ax bx cx
ay by cy

∣∣∣∣∣∣, a,b, c ∈ E2

▶ ∆(a,b, c) equals to twice the signed area of the triangle
bound by a,b, c points (positive if the vertices are given in
counter-clockwise direction, otherwise it’s negative)

▶ If we are in E3: ∆(a,b, c) = ⟨(b − a)× (c − a),n⟩, where n is
the unit long normal of the 3 point’s plane.



Cartesian → barycentric conversion

▶ Let x ∈ E2 be a point, then its barycentric coordinates with
p1 = (x1, y1),p2 = (x2, y2),p3 = (x3, y3) ∈ E2 affinely
independent points are:

u =
∆(x,p2,p3)

∆(p1,p2,p3)

v =
∆(p1, x,p3)

∆(p1,p2,p3)

w =
∆(p1,p2, x)
∆(p1,p2,p3)



Motivation

▶ Project the points of a line e onto the x axis from k point!



Motivation

▶ The point d′ is not on the Euclidean plane (E2), since the
projection ray passing through k and d is parallel to the x axis

▶ Idea: expand E2!
▶ → Let us consider the same orientation of the lines (their

direction) as a point!
▶ This will be the ideal point of the line.



Definition – ideal point

▶ Line = Line + 1 ideal point such that:
▶ Parallel lines have the same ideal point (”they meet at

infinity”)
▶ The ideal points of a plane lie on a line, this is the ideal line of

the plane
▶ The ideal line of parallel planes coincide
▶ The ideal elements of space (points, lines) lie in a plane, this is

the ideal plane of the space



Definition and properties – homogeneous space

▶ Projective plane: the projective closure of E2, that is all the
points of E2 and its ideal line
▶ Two points determine a line in the projective plane
▶ Two lines determine a point (!)
▶ ...

▶ Projective space: the projective closure of E3, that is E3 plus
its ideal plane
▶ Three points determine a plane
▶ Three distinct planes determine a point (!)
▶ (HW: is it true that any (arbitrary) three planes define a point

in projective space that is on all three planes? In what cases
does it not?)

▶ ...



Homogeneous coordinates

▶ We assign a quadrilateral homogeneous coordinates for each
point of the Euclidean space:
p(x, y, z) → [x, y, z, 1]

≈ h[x, y, z, 1]
= [hx, hy, hz, h], h ̸= 0

▶ for every direction vector v = [x, y, z]T:
[x, y, z] → [x, y, z, 0]

≈ h[x, y, z, 0]
= [hx, hy, hz, 0], h ̸= 0

▶ Thus the homogeneous coordinates of a point or direction
vector can be multiplied with any h ̸= 0 number and the
resulting coordinates represent the same point or direction
vector.
▶ When embedding En into Rn+1, this means that all points on

the projecting line mean the same euclidean point/vector.



Embedding E2 into R3



Converting back to Cartesian coordinate system

▶ What does [x1, x2, x3, x4] represent in projective space?
▶ If x4 ̸= 0, then we are talking about a point whose coordinates

after homogeneous (or projective) division are:

[x1, x2, x3, x4] ≈
[

x1
x4

,
x2
x4

,
x3
x4

, 1
]
= p

(
x1
x4

,
x2
x4

,
x3
x4

)

▶ If x4 = 0, but x2
1 + x2

2 + x2
3 ̸= 0 (=not all zero), then its an ideal

point of a line whose orientation is same as [x1, x2, x3] vector.
▶ If xi = 0, i = 1, 2, 3, 4, then its undefined.



Notable homogeneous points

▶ Let c ̸= 0 real number. Examples of notable points:
▶ [0, 0, 0, c] origin
▶ [c, 0, 0, 0] ideal point of x axis
▶ [0, c, 0, 0] ideal point of y axis
▶ [0, 0, c, 0] ideal point of z axis



Properties

▶ On the projective plane, point and line, and in projective
space, point and plane are dual concepts

▶ Note that some properties do not transfer from Euclidean
space:
▶ A point on a line does not divide the line into two parts! But:

two different points do
▶ A line does not divide a plane into two parts! But: two

different lines do
▶ Two points do not uniquely identify a segment! (The ideal

point of the line ”glues together” the two ends of the line)
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